This Class 558 is considered to be an integral part of Class 260 (see the Class 260 schedule for the position of this Class in schedule hierarchy). This Class retains all pertinent definitions and class lines of Class 260.

ORGANIC COMPOUNDS (CLASS 532, SUBCLASS 1)

- 1 .Thioimidate esters (i.e., compounds having the thioimidate group, HN=CH-S-, wherein substitution may be made for hydrogen only, bonded directly to carbon, which carbon may be single bonded to any atom but may be multiple bonded only to carbon)
- 2 ..Chalcogen bonded directly to the carbon of the thioimidate group (e.g., HN=C(OH)-S-, wherein substitution may be made for hydrogen only)
- 3 ..Oxygen attached directly to the nitrogen of the thioimidate group by nonionic bonding (i.e., HO-N=CH-S-, wherein substitution may be hydrogen only)
- 4 ..Nitrogen bonded directly to the carbon of the thioimidate group (i.e., pseudothioureas, HN=C(HNH)-S-, wherein substitution may be made for hydrogen only)

5 ...Chalcogen attached indirectly to the thioimidate group by acyclic nonionic bonding

6 .Imidate esters (i.e., compounds having the imidate group, HN=CH-O-, wherein substitution may be made for hydrogen only, bonded directly to carbon, which carbon may be single bonded to any atom but may be multiple bonded only to carbon)

7 ..Oxygen attached directly to the nitrogen of the imidate group by nonionic bonding (i.e., HO-N=CH-O-, wherein substitution may be made for hydrogen only) 8

9

- ..Nitrogen bonded directly to the carbon of the imidate group (i.e., pseudoureas, HN=C(HNH)-O-, wherein substitution may be made for hydrogen only)
- ..Carbon bonded directly to the nitrogen of the imidate group (e.g., N cyanoimidates, etc.)
- 10 .Thiocyanate esters (i.e., compounds having the thiocyano group, -SCN, bonded directly to carbon, which carbon may be single bonded to any atom but may be multiple bonded only to carbon)
- 11 ..Plural thiocyano groups attached to each other indirectly by nonionic bonding
- 12 ..Thiocyano and the carbonyl carbon of a -COO- group are attached to the same carbon or to a chain consisting of carbons, which chain may include ring members (e.g., terpene thiocyanoacyl compounds, etc.)
- 13 ..Thiocyano bonded directly to a benzene ring
- 14 ..Nitrogen or carbonyl attached indirectly to the thiocyano group by acyclic nonionic bonding
- 15 ..Sulfur or halogen attached indirectly to the thiocyano group by acyclic nonionic bonding
- 16 ...Oxygen attached indirectly to the thiocyano group by acyclic nonionic bonding
- 17 .Isothiocyanate esters (i.e., compounds containing the isothiocyanate group, -N=C=S, bonded directly to carbon, which carbon may be single bonded to any atom but may be multiple bonded only to carbon)
- 18 .. Processes for forming the isothiocyanate group
- 19 ...Thiocyano, isocyanate, or isocyanide dihalide group containing compound utilized (i.e., -SCN, -N=C=O, or -N=CXX containing compound utilized wherein X is halogen)

558 - 2 CLASS 558 ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES

20	.Sulfate esters (i.e., compounds having the sulfate group, -O- S(=O)(=O)O-, bonded directly to at least one carbon, which carbon may be single bonded to any atom but may be multiple bonded only to garbon)	38	Plural alkyl groups, or hydrogen and an alkyl group, bonded directly to the sulfate group, wherein the hydrogen may be replaced by substituted or unsubstituted ammonium, or by a Group IA or IIA light
21	With preservative or stabilizer		metal (e.g., ethyl hydrogen
22	Phosphorus attached directly or indirectly to the sulfate		<pre>sulfate, methyl ammonium sulfate, diethyl sulfate, etc.)</pre>
23	Chalcogen bonded directly to	39	Processes
23	the sulfate group	40	Heavy metal containing
24	Plural sulfate groups attached indirectly to each other by		<pre>material utilized (e.g., as catalyst, promoter, etc.)</pre>
	nonionic bonding	41	Reactant contains alcoholic -
25	Nitrogen attached indirectly		OH group (wherein H of -OH may
	to a sulfate group by acyclic nonionic bonding		be replaced by substituted or unsubstituted ammonium, or by
26	Additional chalcogen attached		a Group IA or IIA light metal)
	indirectly to a sulfate group by acyclic nonionic bonding	42	Reactant contains acyclic or alicyclic carbon to carbon
27	Quaternary nitrogen containing	4.2	double bond
28	Having $-C(=X)-$, wherein X is	45	Culference esters (i.e.
	chalcogen, attached indirectly	44	.Sullonate esters (i.e.,
	to the quaternary nitrogen		Compounds naving the sufficience group $O(S(-0))(-0)$ wherein
29	Nitrogen attached indirectly to the sulfate group by acyclic nonionic bonding		the single bonded oxygen is bonded directly to carbon,
30	Having -C(=X)-, wherein X is chalcogen, bonded directly to the nitrogen		which carbon may be single bonded to any atom but may be multiple bonded only to
31	Chalcogen attached indirectly		carbon)
	to the sulfate group by acyclic nonionic bonding	45	Phosphorus attached directly or indirectly to the sulfonate
32	The chalcogen, X, is part of a	16	Blural gulfenate groups
	-C(=X) - group	40	attached indirectly to each
33	The chalcogen is bonded		other by nonionic bonding
	directly to a ring	47	Nitrogen attached directly or
34	Plural chalcogens attached indirectly to the sulfate		indirectly to a sulfonate group by nonionic bonding
	group by acyclic nonionic	48	Nitrogen attached directly or
25	Uplogon attached indirectly to		indirectly to the sulfonate
55	the sulfate group by advalia		group by acyclic nonionic
	nonionic bonding		bonding
36	Acyclic carbon chain containing	49	The nitrogen is bonded
50	carbon to carbon unsaturation		directly to $-C(=X)-$, wherein X
	attached directly to the		is chalcogen
	sulfate group by nonionic	50	Additional nitrogen attached
	bonding		directly or indirectly to the
37	Benzene ring attached directly		-C(=X)- group by acyclic
	or indirectly to the sulfate		nonionic bonding
	group by nonionic bonding		

51	Chalcogen attached indirectly to the sulfonate group by acyclic nonionic bonding	70	.Phosphorus esters (i.e., compounds having the phosphorus ester group
52	The chalcogen, X, is in a -		wherein trivalent or pentavalent phosphorus
53	Halogen attached directly or indirectly to the sulfonate group by acyclic nonionic bonding		carbon are bonded direct the same divalent chalct and wherein the carbon single bonded to any at
54	Plural halogens attached indirectly to the sulfonate	71	may be multiple bonded carbon)
	group by acyclic bonding	71	With preservative or sta
55	Acyclic carbon chain containing	72	
	carbon to carbon unsaturation	/3	The phosphorus is in a s
	attached directly to the	/4	Ring phosphorus is sha
	sulfonate group by nonionic	75	Decenhorize and nitrog
56	Pengene ring bonded directly to		the same ring
50	the gulferate group	76	Additional phosphorus
57	Alicyclic ring attached	,0	containing ring
	directly or indirectly to the	77	Phosphorus, and two
	sulfonate group by nonionic bonding		chalcogens bonded direct thereto, in the same right
58	Additional benzene ring containing		(e.g., cyclic phosphona etc.)
59	.Sulfite esters (i.e., compounds having the sulfite group, -O- S(=O)O-, bonded directly to at least one carbon which carbon	78	<pre>Acyclic divalent cha single bonded directly ring phosphorus (e.g., phosphites_etc_)</pre>
	may be single bonded to any atom but may be multiple bonded only to carbon)	79	double bonded directly ring phosphorus (e.g.,
60	Chalcogen attached indirectly		phosphates, etc.)
	to the sulfite group by	80	And nitrogen in the ri
61	acyclic nonionic bonding	81	And chalcogen or carb
01	compounds having the sulfinate	82	And carbon and chalcog
	group, $-0-S(=0)-$, wherein the	02	the ring
	single bonded oxygen is bonded	83	Plural chalcogens in
	directly to carbon, which	84	The ring phosphorus
	carbon may be single bonded to		attached directly to ha
	any atom but may be multiple		or an acyclic nitrogen
~ ~	bonded only to carbon)		nonionic bonding
62	.Sulfenate esters (i.e., compounds having the sulfenate group, -S-O-, wherein the oxygen is bonded directly to	85	<pre>Acyclic divalent cha single bonded directly ring phosphorus (e.g., phosphites_etc.)</pre>
	carbon, which carbon may be single bonded to any atom but may be multiple bonded only to carbon)	86	<pre>And divalent chalco double bonded directly ring phosphorus (e.g., phosphates. etc.)</pre>
		87	Processes
		88	Isomerization

	compounds having the
	phosphorus ester group,
	wherein trivalent or
	pentavalent phosphorus and
	carbon are bonded directly to
	the same divelopt shelesson
	the same divalent charcogen,
	and wherein the carbon may be
	single bonded to any atom but
	may be multiple bonded only to
	carbon)
71	With preservative or stabilizer
72	Boron containing
73	The phosphorus is in a ring
74	Ring phosphorus is shared by
/ 1	two rings
75	
/5	Phosphorus and nitrogen in
	the same ring
76	Additional phosphorus
	containing ring
77	Phosphorus, and two
	chalcogens bonded directly
	thereto, in the same ring
	(e.g., cyclic phosphonates,
	etc.)
78	Acyclic divalent chalcogen
10	single bonded directly to the
	single bonded differry to the
	ring phosphorus (e.g., cyclic
	phosphiles, etc.)
79	And divalent chalogen
	double bonded directly to the
	ring phosphorus (e.g., cyclic
	phosphates, etc.)
80	And nitrogen in the ring
81	And chalcogen or carbon in
	the ring
82	And carbon and chalcogen in
	the ring
83	Diural dealgogeng in the ring
0.1	Fiurar charcogens in the ring
04	Ine ring phosphorus is
	attached directly to halogen
	or an acyclic nitrogen by
	nonionic bonding
85	Acyclic divalent chalcogen
	single bonded directly to the
	ring phosphorus (e.g., cyclic
	phosphites, etc.)
86	And divalent chalcogen
	double bonded directly to the
	ring phosphorus (e.g. cyclic
	phosphates etc.)
87	Progesses
07	
00	Isomerization
89	Forming the phosphorus ester
	group

558 - 4 CLASS 558 ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES

90	Reactant having halogen attached directly to	103
91	phosphorus by nonionic bonding	104
	chalcogen-containing hetero ring	
92	And reactant having alcoholic or phenolic -XH	
	group, wherein X is chalcogen (and wherein H of -XH may be	105
	replaced by substituted or unsubstituted ammonium, or by a Group IA or IIA light metal)	106
93	And nitrogen bonded directly to the phosphorus in the phosphorus containing	
94	attached directly to the phosphorus in the phosphorus containing reactant by	107
95	nonionic bonding The phosphorus in the	108
06	reactant is trivalent	
96	compound utilized (e.g., pyridine, carbamates, urea, etc., utilized as catalysts.	109
	proton acceptors, etc.)	110
97	Trivalent phosphorus converted into pentavalent	
98	phosphorus And carbon bonded directly to the phosphorus in the	
	(e.g., methyl phosphorodichloride, etc.)	111
99	And divalent chalcogen single bonded directly to the	112
	phosphorus in the phosphorus containing reactant (e.g., diethyl phosphorochloridate, etc.)	113
100	Nitrogen containing compound utilized (e.g.,	114
	pyridine, carbamates, urea, etc., utilized as catalysts, proton acceptors, etc.)	
101	<pre>Nitrogen containing compound utilized (e.g., pyridine, carbamates, urea, etc., utilized as catalysts,</pre>	115
102	<pre>proton acceptors, etc.)Metal containing material utilized (e.g., as catalysts,</pre>	

103	<pre>And reactant having -C(=X)-, wherein X is chalcogen</pre>
104	Reactant has -XH, wherein X is chalcogen, bonded directly to phosphorus (wherein H of - XH may be replaced by substituted or unsubstituted ammonium, or by a Group IA or
105	And reactant having three- membered hetero ring
106	And reactant having halogen bonded directly to carbon, which carbon may be single bonded to any element but may be multiple bonded only to carbon
107	<pre>Having -C(=X)-, wherein X is chalcogen, or cyano attached indirectly to the halogen by acyclic nonionic bonding</pre>
108	<pre>And -C(=X)- containing reactant, wherein X is chalcogen</pre>
109	And unsaturated hydrocarbon reactant (e.g., pinene,
110	<pre>And reactant having alcoholic or phenolic -XH group, wherein X is chalcogen (and wherein H of -XH may be replaced by substituted or unsubstituted ammonium, or by a Group IA or IIA light metal)</pre>
111	Additional diverse
112	phosphorus consists of phosphorus and sulfur (e.g., phosphorus pentasulfide, etc.)
113	phosphorus pentoxide, etc.)
114	<pre>And reactant having alcoholic or phenolic -XH group, wherein X is chalcogen (and wherein H of -XH may be replaced by substituted or unsubstituted ammonium, or by a Group IA or IIA light metal)</pre>
115	Trivalent phosphorus converted into pentavalent phosphorus

etc.)

116	<pre>Reactant having halogen and -C(=X)-, wherein X is chalcogen, bonded directly to the same carbon (e.g., alpha halo carbonyl compounds, etc.)</pre>	131	Converting a phosphorus ester group to a P-XH group, wherein H of -XH may be replaced by substituted or unsubstituted ammonium or by a Group IA or
117	Reactant is a phosphorus ester (e.g., transesterification, etc.)		IIA light metal, and wherein X is chalogen and P may be trivalent or pentavalent
118	And reactant having alcoholic or phenolic -XH	132	Forming phosphorus to chalcogen bond
	group, wherein X is chalcogen (and wherein X of -XH may be replaced by substituted or unsubstituted ammonium, or by a Group IA or IIA light metal)	133	Replacing H of P-XH with substituted or unsubstituted ammonium, or with a Group IA or IIA light metal, and wherein X is chalcogen and P
119	<pre>The -XH is bonded directly to alkyl</pre>	134	is trivalent or pentavalentSubstituting carbon for
120	The phosphorus ester reactant has hydrogen or metal bonded directly to phosphorus		halogen, hydrogen, or metal bonded directly to the phosphorus
121	Elemental phosphorus reactant	135	Aldehyde or ketone reactant
122	Trivalent phosphorus converted into pentavalent phosphorus	136	Reactant having halogen bonded directly to carbon
123	Molecular oxygen or elemental sulfur reactant (e.g., air,		(e.g., ethyl bromide, benzoyl chloride, etc.)
	etc.)	137	Reactant having acyclic or
124	Reactant having halogen bonded directly to carbon		alicyclic carbon to carbon unsaturation
	(e.g., Arbuzov rearrangement, etc.)	138	Forming phosphorus to nitrogen bond
125	The reactant contains carbon to carbon unsaturation	139	Forming a -C(=X)NHH or -N=C=O group, wherein X is chalcogen
126	<pre>Reactant having -C(=X)-, wherein X is chalcogen</pre>		and substitution may be made for hydrogen only
127	Forming a linkage wherein divalent chalcogen is bonded	140	Forming nonionic phosphorus to halogen bond
	directly to two phosphori	141	Halogenation of carbon
	(e.g., forming the pyrophosphate linkage, etc.)	142	Forming carbon to carbon multiple bond
128	Reactant having halogen attached directly to	143	Utilizing oxirane ring containing compound
	phosphorus by nonionic bonding	144	Reactant having halogen or
129	Forming or utilizing an -O-O- or -S-S- group		nitrogen attached directly to phosphorus by nonionic bonding
130	Forming P-X-C(=X)- group, wherein the X's may be the same or different chalcogens	145	Reactant having nitrogen attached indirectly to phosphorus by nonionic bonding
	and the phosphorus may be	146	Purification or recovery
	trivalent or pentavalent	147	Of compounds having plural phosphori
		148	Of compounds having halogen attached directly to phosphorus by nonionic bonding

149Oxidation employed to purify or recover

558 - 6 CLASS 558 ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES

150	Metal containing material utilized or separated
151	Oxygen single bonded to oxygen, or sulfur single bonded to sulfur (e.g., peroxy compounds, etc.)
152	Plural phosphori bonded to the same chalcogen (e.g., pyrophosphate esters, etc.)
153	Phosphorus and a -C(=X)- group, wherein X is chalcogen, bonded directly to the same chalcogen
154	Hydrazine, or substituted hydrazine, group attached directly or indirectly to the phosphorus by nonionic bonding (i.e., HHN-NH- group, wherein substitution may be made for hydrogen only)
155	Plural phosphori attached directly or indirectly to each other by nonionic bonding
156 157	Plural phosphorus ester groups Nitrogen bonded directly to phosphorus
158	Nitrogen attached indirectly to phosphorus by acyclic nonionic bonding
159	Having -C(=X)-, wherein X is chalcogen, bonded directly to the nitrogen
160	<pre>Having -C(=X)-, wherein X is chalcogen, attached indirectly to phosphorus by acyclic nonionic bonding</pre>
161	Divalent chalcogen double bonded directly to pentavalent phosphorus
162	<pre>Plural phosphori attached indirectly to each other by a benzene ring or by a chain which includes a benzene ring</pre>
163	Plural phosphori attached indirectly to each other by an acyclic chalcogen containing
164	acyclic chain

165	Divalent chalcogen, bonded directly to two carbons or to carbon and hydrogen, attached indirectly to phosphorus by acyclic nonionic bonding (wherein the hydrogen may be replaced by substituted or
	unsubstituted ammonium, or by
1.00	a Group IA or IIA light metal)
166	Nitrogen attached indirectly to the phosphorus by acyclic
167	nonionic bonding
107	cvano or isocvano group
168	Chalcogen attached indirectly
100	to the phosphorus by acyclic nonionic bonding
169	Chalcogen attached indirectly
	to the phosphorus by acyclic nonionic bonding
170	The chalcogen, X, is in a -
	C(=X)- group, which group is
	bonded directly to the
	nitrogen
171	Nitrogen bonded directly to the phosphorus
172	The $-C(=X)$ - is part of a -
	C(=X)X- group, wherein the X's
	may be the same or diverse
4 - 0	chalcogens
173	Chalcogen, or additional -
	C(=X), bonded directly to the
174	Two carbons bonded directly
1,1	to the same chalcogen (e.g.,
	sulfones, carboxylic acid
	esters, ethers, etc.)
175	Chalcogen bonded directly to
	the nitrogen by nonionic
	bonding
176	Containing carbon double
177	Chalgegon attached indirectly
1//	to the phosphorus by acyclic
	nonionic bonding
178	The chalcogen, X, is in a -
	C(=X)- group
179	The $-C(=X)$ - is part of a -
	C(=X)X- group, wherein the X's
	are the same or diverse
100	chalcogens
ΤΩΟ	Plural -C(=X)X- groups
	actached indirectly to the
	bonding

181	The carbon of the -C(=X)X- group is bonded directly to the phosphorus or to nitrogen	197	Ether oxygen or thioether sulfur bonded directly to a benzene ring
	which is bonded directly to the phosphorus	198	The chalcogen, X, is in a - C(=X)- group
182	Acyclic carbon chain containing carbon to carbon	199	Nitrogen bonded directly to the phosphorus
	unsaturation attached directly or indirectly to the phosphorus by acyclic nonionic bonding	200	Benzene ring and the phosphorus bonded directly to the same chalcogen (i.e., the carbon of the phosphorus ester
183	Plural carbons bonded directly to the same chalcogen which is	0.01	group is part of a benzene ring)
	phosphorus by acyclic nonionic bonding (e.g., ethers, etc.)	201	Acyclic carbon chain containing carbon to carbon unsaturation attached
184	The chalcogen is part of a - S(=0)- or a -S(=0)(=0)- group		indirectly to the phosphorus by acyclic nonionic bonding
185	<pre>(e.g., sulfones, etc.)Nitrogen bonded directly to the phosphorus</pre>	202	Halogen attached directly to the phosphorus by nonionic bonding
186	Plural ether oxygens or thioether sulfurs attached indirectly to the phosphorus	203	Halogen attached indirectly to the phosphorus by acyclic nonionic bonding
187	by acyclic nonionic bonding	204	Plural fluorines bonded to an
	directly to a benzene ring and	205	acyclic carbon chain
188	Halogen attached directly or	205	containing
	indirectly to the phosphorus by acyclic nonionic bonding	206	The unsaturation is in a benzene ring
189	phosphorus	207	Divalent chalcogen double bonded directly to the
190	the phosphorus by nonionic bonding	208	phosphorus And three divalent chalcogens single bonded directly to the
191	Nitrogen or halogen attached directly to the phosphorus by		phosphorus (e.g., trialkyl phosphates, etc.)
192	nonionic bonding Cyano or isocyano attached	209	Alicyclic ring bonded directly to one of the
193	by nonionic bonding Nitro bonded directly to a	210	Benzene ring bonded directly
104	benzene ring	211	Benzene ring bonded directly
194	Chalcogen attached indirectly to the phosphorus by nonionic bonding	21.2	to each of the three chalcogens
195	Nitrogen or halogen attached directly to the phosphorus by	212	bonded directly to the benzene ring
196	nonionic bonding The chalcogen is part of a -	213	Multiple bond between two acyclic carbons
	S(=0)- or a -S(=0)(=0)- group (e.g., sulfoxides, sulfonic acids, etc.)	214	And two divalent chalcogens single bonded directly to the phosphorus
		215	Benzene ring bonded directly to one of the chalcogens

558 - 8 CLASS 558 ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES

216	Benzene ring bonded directly
217	Multiple bond between two acyclic carbons
218	Three divalent chalcogens single bonded directly to trivalent phosphorus (e.g., trialkyl phosphites, etc.)
230	<pre>.Esters having the thiocarboxylate group, - C(=X)X-, wherein the X's are the same or diverse chalcogens, with at least one X being sulfur, and wherein the single bonded X is bonded directly to an additional carbon, which carbon may be single bonded to any atom, but may be multiple bonded only to carbon</pre>
231	Phosphorus attached directly or indirectly to the thiocarboxylate group by nonionic bonding
232	Nitrogen bonded directly to the carbon of the -C(=X)X- group (e.g., thiocarbamates, etc.)
233	<pre>Chalcogen, nitrogen, or additional -C(=X)- attached directly to the nitrogen by nonionic bonding (X is chalcogen)</pre>
234	The $-C(=X)X - ig -C(=S)O -$
231	The $-C(-X)X = ig -C(-S)S$
235	\ldots If $-C(-x)x^{-1}$ is $-C(-3)s^{-1}$
230	chalcogen attached indirectly to the nitrogen by acyclic nonionic bonding
237	<pre>Plural HHN-C(=S)S- groups, wherein substitution may be made for hydrogen only</pre>
238	<pre>Cyano or -C(=X)-, wherein X is chalcogen, attached indirectly to the nitrogen by acyclic nonionic bonding</pre>
239	Nitrogen or additional chalcogen attached indirectly to the nitrogen by acyclic nonionic bonding
240	<pre>The chalcogen, X, is in a - C(=X)- group</pre>
241	Benzene ring bonded directly to the nitrogen or to the sulfur of a -C(=O)S- group

242 ...Benzene ring attached indirectly to the nitrogen by nonionic bonding

- 243 ..Esters having the -X-C(=X)Xgroup, wherein the X's are the same or diverse chalcogens and at least one X is sulfur, and wherein one of the single bonded X's is bonded directly to carbon, which carbon may be single bonded to any atom, but may be multiple bonded only to carbon (e.g., thiocarbonates, etc.)
- 244Two -C(=X)- groups, wherein the X's are the same or diverse chalcogens, bonded directly to the same chalcogen or to a chain consisting of chalcogens (e.g., xanthic disulfides, etc.)
- 245 ...The -X-C(=X)X- is -S-C(=S)O-(e.g., xanthates, etc.)
- 247Alkyl and hydrogen bonded directly to the -S-C(=S)Ogroup, wherein the hydrogen may be replaced by substituted or unsubstituted ammonium or by a Group IA or IIA light metal (e.g., sodium ethyl xanthate, etc.)
- 248 ...The -X-C(=X)X- is -S-C(=0)0-(e.g., thiolcarbonates, etc.)
- 250 ..The -C(=X)X- is -C(=O)S-251 ...Plural -C(=O)S- groups
- 251 ...Plural -C(=0)S- groups containing
 252 ...Chalcogen attached indirectly to the -C(=0)S- group by acyclic nonionic bonding
 253The chalcogen, X, is in a -
 - C(=X)- group
- - 56 ...Nitrogen attached indirectly to the -C(=0)S- group by acyclic nonionic bonding

- 257 ...Benzene ring attached directly or indirectly to the -C(=0)Sgroup by nonionic bonding
- 260 .Carbonate esters (i.e, compounds having the -O-C(=0)O- group bonded directly to at least one carbon, which carbon may be single bonded to any atom but may be multiple bonded only to carbon)
- 261 ..With preservative or stabilizer
- 262 ..Nitrogen attached directly to the -O-C(=O)O- group by nonionic bonding (e.g., oxime carbonates, urea carbonates, etc.)
- 264 ...Carbonyl bonded directly to the oxygen (i.e., compounds having the -O-C(=O) O-O-C(=O)group; e.g., peroxydicarbonates, acyl peroxycarbonates, etc.)

- 266 ...Additional chalcogen attached indirectly to one of the -O-C(=O)O- groups by acyclic nonionic bonding267The additional chalcogen, X,
- is in a -C(=X)- group 268 ...Benzene ring attached directly
- or indirectly to one of the -O-C(=O)O- groups by nonionic bonding
- 269Nitrogen attached directly or indirectly to the benzene ring by nonionic bonding
- 271 ...Additional chalcogen bonded directly to the benzene ring
- 272 ...Nitrogen bonded directly to the benzene ring
- 273 ...Nitrogen or additional chalcogen attached indirectly to the benzene ring by acyclic nonionic bonding
- 274 ...Two benzene rings bonded directly to the -O-C(=O)Ogroup (i.e., diaryl carbonates)

275 ..Benzene ring attached indirectly to the -O-C(=0)O-group by nonionic bonding

- 276 ..Nitrogen or chalcogen attached indirectly to the -O-C(=0)Ogroup by acyclic nonionic bonding
- 277 ..Two identical or diverse alkyl groups bonded directly to the -O-C(=0)O- group (e.g., dimethyl carbonate, methyl ethyl carbonate, etc.)
- 280 .Halocarbonate esters (i.e., compounds having the halo-C(=0)0- group bonded directly to carbon, which carbon may be single bonded to any atom but may be multiple bonded only to carbon)
- 281 ..Plural halo-C(=0)0- groups attached indirectly to each other by nonionic bonding
- 282 ..Benzene ring attached directly or indirectly to the halo-C(=0)0- group by nonionic bonding
- 283 ..Halogen attached indirectly to the halo-C(=0)O- group by nonionic bonding
- 285 .Thioborate esters (i.e., compounds having boron and carbon each single bonded to the same divalent sulfur, which carbon may be single bonded to any atom but may be multiple bonded only to carbon)
- 286 .Borate esters (i.e., compounds having boron and carbon each single bonded to the same oxygen, which carbon may be single bonded to any atom but may be multiple bonded only to carbon)
- 287 ..Boron and oxygen in the same ring
- 288 ...Carbon in the ring
- 289Nitrogen in the ring
- 290Plural rings each having boron, carbon and oxygen as ring members
- 291Three oxygens attached directly to the same boron by nonionic bonding

558 - 10 CLASS 558 ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES

292	Plural acyclic borons attached directly or indirectly to each
293	to the same boron by nonionic bonding
294	Benzene ring attached indirectly to boron by nonionic bonding
295	Nitrogen or chalcogen attached indirectly to boron by acyclic nonionic bonding
296	Trialkyl borates (i.e., compounds having the structure (RO)B(OR)(OR), wherein the R's represent the same or diverse alkyl groups
297	Processes utilizing boric oxide or an inorganic boric acid
298	Carbon bonded directly to the
299	Nitrile oxides or nitrile imines (i.e., compounds having cyano bonded directly to carbon, which carbon may be single bonded to any atom but may be multiple bonded only to carbon, and wherein the nitrogen of the cyano group is bonded directly to oxygen or to nitrogen)
300	.Cyano single bonded and nitrogen or phosphorus double bonded to the same carbon atom (e.g., alpha-imino pitriles etc.)
301	<pre>Oxygen bonded directly to the double bonded nitrogen (e.g., alpha-oximino nitriles, etc.)</pre>
302	.Isonitriles (i.e., compounds having an isonitrile group, usually represented as -N=C, bonded directly to carbon, which carbon may be single bonded to any atom but may be multiple bonded only to carbon)
303	.Nitriles (i.e., compounds having cyano bonded directly to carbon, which carbon may be single bonded to any atom but may be multiple bonded only to carbon)
304	With preservative or stabilizer

305	Acyclic or alicyclic carbon to carbon unsaturation in the preserved or stabilized nitrile
306	Organic compound, which contains nitrogen, utilized as preservative or stabilizer
307	Sulfur or phosphorus containing preservative or stabilizer
308	Processes for forming the cyano
309	Hetero ring containing reactant
310	<pre>Nitrogen, or oxygen, and carbonyl carbon are adjacent ring members of the hetero ring (e.g., lactams, lactones, etc.)</pre>
311	<pre>Reactant is a carboxylic acid, or an amide, anhydride, ester, halide, or salt thereof</pre>
312	Utilizing a formamide, heavy metal salt, aluminum halide, organosilicon compound, organophosphorus compound, or a compound containing nitrogen and sulfur
313	Liquid phase reaction
314	Iltiliging nitryl balido
511	nitrosyl halide, HCH=NO- or HHNO- (wherein substitution may be made for hydrogen only; e.g., oximes, oxime esters, hydroxylamine salts, olefin- nitrosyl chloride adducts, etc.)
315	Reactant is an aldehyde or ketone, or a compound having carbon double bonded to nitrogen (e.g., ammoxidation of acrolein, etc.)
316	Reactant contains -OH bonded directly to acyclic or alicyclic carbon (wherein H of -OH may be replaced by substituted or unsubstituted ammonium, or by a Group IA or IIA light metal)
317	Utilizing a nitrogen oxide or an azide
318 319	Ammonia utilized And molecular oxygen or a molecular oxygen containing gas

320	Acting on a compound containing acyclic or alicyclic carbon to carbon unsaturation	338	Organic material which contains phosphorus, arsenic, or antimony, in addition to nickel, utilized (e.g., zero-
321	Niobium, tantalum, silver,		valent nickel complexes, etc.)
-	sulfur, ruthenium, rhodium,	339	Cobalt, copper, silver, or
	palladium, osmium, iridium, or		gold containing material
	platinum containing material		utilized
	utilized	340	Ruthenium. rhodium.
322	Tellurium containing		palladium, osmium, iridium, or
	material utilized		platinum containing material
323			utilized
	material utilized	341	The organic compound contains
324	Bismuth containing		a carbonyl (e.g., ketene,
021	material utilized		etc.)
325	Antimony containing	342	Replacing halogen with cyano
525	material utilized	343	On benzene ring
326	Iranium or argenic	344	Organic compound of nitrogen
520	containing material utilized	511	phosphorus, arsenic, antimony,
327	Acting on a benzene ring-		or bismuth utilized other than
527	containing compound		as reactant (e.g., utilizing
328	Alkali metal containing		phase transfer agents, etc.)
520	material utilized	345	Aldehyde, and carboxylic acid
329	Droduct contains cyano bonded		halide or carboxylic acid
527	directly to a benzene ring		anhydride, reacted with the
330	Reactant contains acyclic or		inorganic cyanide
550	aligualig garbon to garbon	346	Aldehyde or ketone, and
	double bond		ammonia or substituted
331	Homopolymerization of HCN		ammonia, reacted with the
551	(e g tetramerization of HCN		inorganic cyanide
	to diaminomaleonitrile)	347	Hetero ring containing
332	Processes of attaching cyano to		compound reacted with the
	carbon by reaction of an		inorganic cyanide (e.g.,
	inorganic cyanide with an		reaction of epoxy compounds,
	organic compound (e.g., using		etc.)
	HCN, cyanogen, metal cyanide,	348	Replacing hydrogen with cyano
	ammonium cyanide, cyanogen		(e.g., malononitrile from
	chloride, etc.)		acetonitrile, etc.)
333	The organic compound contains	349	On benzene ring (e.g.,
	a carbon to carbon triple bond		benzonitrile from benzene,
	(e.g., acrylonitrile from		etc.)
	acetylene and HCN, etc.)	350	Replacing oxygen or nitrogen,
334	Liquid phase reaction (e.g.,		single bonded to carbon, by
	using aqueous CuCl catalyst,		cyano
	etc.)	351	Attaching cyano to the
335	The organic compound contains		carbonyl carbon of an aldehyde
	an acyclic or alicyclic carbon		or ketone (e.g., cyanohydrin
	to carbon double bond		formation, etc.)
336	Cyanogen or cyanogen halide	352	Carboxylic acid, carboxylic
	utilized		acid halide, carboxylic acid
337	The organic compound contains		annyariae, or compound
	halogen bonded directly to		containing carbon double
	carbon		with the increasid evenide
		352	Drogesses utilizing carbon
		555	···· CCBBCB UCTITATING CALDUN

monoxide as a reactant

558 - 12 CLASS 558 ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES

354	Racemization, resolution, or inversion of configuration processes for optically active compounds	369
355	Isomerization processes (e.g., double bond shift, cis-trans isomerism, etc.)	
356	Isomerization of reactants containing plural cyano groups	
357	Processes of forming carbon to carbon bond between carbons of two organic reactants	370
358	Reactions utilizing epoxy	371
	compounds, or free radical	372
	reactions (e.g., utilizing	373
	peroxy or azo promotors etc.)	
359	The carbons that form the bond each lose halogen in the	
	process	274
360	The carbon to carbon bond	3/4
	forms between plural molecules	
	of identical nitrile reactants	
	(e.g., dimerization, etc.)	
361	The reactant is an acyclic	
	nitrile containing carbon to	375
	carbon unsaturation (e.g.,	
	dimerization or	
	oligomerization of	
	acrylonitrile, etc.)	
362	Amalgam utilized	
363	Organic phosphorus compound	376
	utilized	
364	Heavy metal or aluminum	377
	containing material utilized	
265	Formation of a carboqualia	
202	roimation of a carbocycric	
266		378
300	Inree- or four-membered	0,0
	monocyclic ring formed	
367	Cyanoalkylation of an acyclic	370
	or alicyclic carbon, which is	572
	adjacent to a benzene ring or	
	an atom double or triple	
	bonded to a non-carbon atom,	
	by means of acrylonitrile or	
	hydrocarbyl-substituted	200
	acrylonitrile (e.g.,	380
	cyanoethylation, etc.)	38T
368	The cyanoalkylated carbon is	
	adjacent to a carbonyl carbon	

	alicyclic carbon, which is
	adjacent to a benzene ring or
	an atom double or triple
	bonded to a non-carbon atom,
	by means of an alkyl halide.
	alkyl sulfate, substituted
	alkyl halide or substituted
	alkyl sulfate
370	Reactant contains two gyano
570	groups bonded directly to the
	groups bounded directly to the
271	Aldebude en hetere meestert
371	Aldenyde or ketone reactant
372	Formaldenyde reactant
373	Carbonyl carbon of the
	aldehyde or ketone reacts to
	form a carbon to carbon double
	bond with carbon of a second
	reactant
374	The carbon of the second
	reactant is bonded directly to
	two atoms which are each
	double or triple bonded to
	noncarbon atoms
375	Carbon to carbon double bond
	is formed between a nitrile
	reactant having no acyclic or
	alicyclic carbon to carbon
	double bond and a second
	reactant
376	Hydrogen bonded to a benzene
376	Hydrogen bonded to a benzene ring is replaced by carbon
376 377	Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a
376 377	Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain
376 377	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon
376 377	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond
376 377 378	Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no
376 377 378	Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to
376 377 378	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation
376 377 378 379	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic
376 377 378 379	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon
376 377 378 379	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon double bond from an existing
376 377 378 379	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon double bond from an existing acyclic or alicyclic carbon to
376 377 378 379	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon double bond from an existing acyclic or alicyclic carbon to carbon single bond (e.g., by
376 377 378 379	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon double bond from an existing acyclic or alicyclic carbon to carbon single bond (e.g., by dehydroacylation, etc.)
376 377 378 379 380	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon double bond from an existing acyclic or alicyclic carbon to carbon single bond (e.g., by dehydroacylation, etc.) By dehydrohalogenation
376 377 378 379 380 381	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon double bond from an existing acyclic or alicyclic carbon to carbon single bond (e.g., by dehydroacylation, etc.) By dehydrohalogenation By dehalogenation.
376 377 378 379 380 381	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon double bond from an existing acyclic or alicyclic carbon to carbon single bond (e.g., by dehydroacylation, etc.) By dehydrohalogenation By dehalogenation, dehydrocyanation, ring
376 377 378 379 380 381	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon double bond from an existing acyclic or alicyclic carbon to carbon single bond (e.g., by dehydroacylation, etc.) By dehalogenation, dehydrocyanation, ring cleavage, or depolymerization
376 377 378 379 380 381 382	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon double bond from an existing acyclic or alicyclic carbon to carbon single bond (e.g., by dehydroacylation, etc.) By dehydrohalogenation By dehydrotantion, ring cleavage, or depolymerization By dehydration (i.e., removal
376 377 378 379 380 381 382	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon double bond from an existing acyclic or alicyclic carbon to carbon single bond (e.g., by dehydroacylation, etc.) By dehydrohalogenation By dehalogenation, dehydrocyanation, ring cleavage, or depolymerization By dehydration (i.e., removal of water)
376 377 378 379 380 381 382 383	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon double bond from an existing acyclic or alicyclic carbon to carbon single bond (e.g., by dehydroacylation, etc.) By dehydrohalogenation By dehydrothalogenation By dehydration, ring cleavage, or depolymerization By dehydrogenation By dehydrogenation By dehydrothalogenation
376 377 378 379 380 381 382 383 384	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon double bond from an existing acyclic or alicyclic carbon to carbon single bond (e.g., by dehydroacylation, etc.) By dehydrohalogenation By dehydrotion, ring cleavage, or depolymerization By dehydrogenation By dehydrogenation By dehydrogenation By dehydrogenation
376 377 378 379 380 381 382 383 384 385	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon double bond from an existing acyclic or alicyclic carbon to carbon single bond (e.g., by dehydroacylation, etc.) By dehydrohalogenation By dehydration, ring cleavage, or depolymerization By dehydrogenation
376 377 378 379 380 381 382 383 384 385	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon double bond from an existing acyclic or alicyclic carbon to carbon single bond (e.g., by dehydroacylation, etc.) By dehydrohalogenation By dehydration, ring cleavage, or depolymerization By dehydrogenation
376 377 378 379 380 381 382 383 384 385	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon double bond from an existing acyclic or alicyclic carbon to carbon single bond (e.g., by dehydroacylation, etc.) By dehydrohalogenation By dehydration, ring cleavage, or depolymerization By dehydrogenation
376 377 378 379 380 381 382 383 384 385	 Hydrogen bonded to a benzene ring is replaced by carbon A nitrile reactant and a second reactant each contain an acyclic or alicyclic carbon to carbon double bond A nitrile reactant contains no acyclic or alicyclic carbon to carbon unsaturation Processes of forming an acyclic or alicyclic carbon to carbon double bond from an existing acyclic or alicyclic carbon to carbon single bond (e.g., by dehydroacylation, etc.) By dehalogenation By dehalogenation, dehydrocyanation, ring cleavage, or depolymerization By dehydrogenation

...Alkylation of an acyclic or

386	Chalcogen, nitrogen, or halogen bonded directly to the phosphorus by nonionic bonding	405	<pre>Two carbons bonded directly to the carbon of the -C(=X)- group (e.g., ketones, etc.)</pre>
387	Oxygen single bonded to oxygen, or sulfur single bonded to sulfur (e.g., peroxy	406	Oxygen bonded directly to carbonyl (e.g., carboxylic acid esters, etc.)
388	compounds, etc.) Benzene ring attached	407	Three-membered carbocyclic
500	indirectly to the cyano group by acyclic nonionic bonding	408	nitroso, attached indirectly
389	Non-carbon atom in acyclic chain between the benzene ring and the cyano group	109	to the cyano group by nonionic bonding
390	Nitrogen in the acyclic chain	409	containing
391 392	Carbon, also in the chain, double bonded to the nitrogen Having -C(=X)-, also in the	410	Oxygen attached indirectly to the cyano group by nonionic bonding (e.g., nitro group,
	chain, bonded directly to the		etc.)
	nitrogen (wherein X is chalcogen)	411	Benzene ring bonded directly to the cyano group
393	Carbon to carbon	412	Sulfur and hydroxy bonded
	unsaturation, chalcogen, or additional nitrogen in the chain		directly to the same benzene ring, or containing a monocyclic unsaturated
394	The chain nitrogen bonded	413	alicyclic ring or thiocarbonyl
395	directly to the benzene fing Cyano or carbonyl bonded directly to an acyclic carbon which is double bonded to	ΤŢ	oxygen, attached indirectly to the cyano group by nonionic bonding
	another carbon	414	Carbonyl attached indirectly
396	Sulfur in the chain		to the cyano group by nonionic
397	Oxygen double bonded to the sulfur	415	bonding Benzene ring bonded directly
398	Having -COO- in the chain		to the carbonyl
399	The carbon of the -COO- group is bonded directly to	416	Oxygen bonded directly to the carbonyl (e.g., benzoic acid esters, etc.)
400	Cyano or carbonyl bonded	417	The carbonyl is bonded
	directly to an acyclic carbon which is double bonded to another carbon		directly to two non-carbon atoms, or to a non-carbon atom and an additional carbonyl
401	Benzene ring and cyano connected by a chain	418	(e.g., carbamates, oxamides, etc.) Nitrogen, except as nitro or
	multiple bonded to each other	-	nitroso, attached indirectly
402	Additional benzene ring		to the cyano group by nonionic bonding
403	Nitrogen, except as nitro or	419	Plural cyano groups
100	nitroso, bonded directly to	420	containing
404	the benzene ring	±∠U	directly to evano groups
404	chalcogen, attached indirectly to the cyano group by nonionic bonding	421	directly to cyano groups bonded directly to a benzene ring, which is further unsubstituted or hydrocarbyl substituted

only

558 - 14 CLASS 558 ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES

422	The nitrogen is attached indirectly to a benzene ring by acyclic nonionic bonding
423	Oxygen attached indirectly to the cyano group by nonionic bonding
424	Two benzene rings bonded directly to the same oxygen, or nitrogen bonded directly to oxygen (e.g., nitro compounds, phenoxyphenyl compounds, etc.)
425	Halogen attached indirectly to the cyano group by nonionic bonding
426	Benzene ring attached indirectly to the cyano group by nonionic bonding (i.e., alicyclic ring between the benzene ring and the cyano group)
427	Polycyclo ring system having at least three cyclos, at least one of which is a benzene ring
428	Polycyclo alicyclic ring system
429	containing The ring system contains at
430	Six-membered alicyclic ring
431	Cyano bonded directly to the ring
432	Five-membered alicyclic ring
433	Four-membered alicyclic ring
434	Three-membered alicyclic ring
435	Acyclic (e.g., purification of
436	Sulfur attached indirectly to the cyano group by nonionic bonding
437	The sulfur is double bonded
438	Two carbons bonded directly
420	
439 440	Additional cyano group Carbonyl attached indirectly to the cyano group by nonionic bonding (e.g., aldehydes, katopas, etc.)
441	<pre>Oxygen bonded directly to the carbonyl group (e.g., carboxylic acid esters, etc.)</pre>

442	Additional carbonyl attached indirectly to the cyano group by nonionic bonding
443	<pre>The cyano group is bonded directly to the carbon adjacent to the carbonyl carbon (e.g., alpha cyano acrylates, etc.)</pre>
444	<pre>The oxygen is between the carbonyl and the cyano group (e.g., cyano is in the alcohol portion of a carboxylic acid ester, etc.)</pre>
445	<pre>Nitrogen bonded directly to the carbonyl (e.g., ureas, etc.)</pre>
446	<pre>Nitrogen, double bonded to carbon, attached indirectly to the cyano group by nonionic bonding (e.g., imines, oximes, etc.)</pre>
447	Plural carbons bonded directly to the same oxygen
448	Plurals oxygens bonded directly to the same carbon (e.g., acetals, etc.)
449	Cyano is attached directly or indirectly by nonionic bonding to carbon that is multiple bonded to another carbon
450	Processes for formation of an ether group (e.g., cyanoethylation of alcohols, etc.)
451	Having -OH bonded directly to carbon (wherein H of -OH may be replaced by substituted or unsubstituted ammonium, or by a Group IA or IIA light metal) by dehydroacylation, etc.)
452	Nitrogen attached indirectly to the cyano group by nonionic bonding
453	Plural cyano groups bonded directly to the same carbon (e.g., malononitrile, tetracyanoethylene, etc.)
454	Plural cyano groups bonded directly to the same chain (e.g., adiponitrile, etc.)
455	The chain contains nitrogen (e.g., iminodiacetonitrile,

nitrilotriacetonitrile, etc.)

456	Purification or recovery of saturated hydrocarbon dinitriles (e.g., from
	mixtures with cyanocyclopentanonimine, 2- cyanocyclopenten-1-ylamine,
	etc.)
457	A carbon in the chain is multiple bonded to carbon
	(e.g., 1,4 dicyanobutene,
458	The nitrogen is attached
	directly to halogen by
	nonionic bonding, or is part
	of a nitro, nitroso, nitrate,
	or N-oxide group
459	Hydrogenation of dinitriles,
	or displacement of halo,
	hydroxy, or alkoxy by ammonia
	or substituted ammonia
460	Halogen attached indirectly to
	the cyano group by nonionic bonding
461	Plural halogens attached
	indirectly to the cyano group
160	by nonionic bonding
462	Carbon to carbon unsaturation
162	containing Duri fi anti-array array array
403	Purilication or recovery
404	Utilizing ion exchange
	or boowy motal containing
	material
465	Of nitriles prepared by
105	hydrocvanation (e.g., by
	reaction of acetylene with
	hydrogen cyanide, etc.)
466	Of nitriles prepared by
	reaction of an organic
	compound, ammonia, and
	molecular oxygen or a
	molecular oxygen-containing
	gas (i.e., of nitriles
465	prepared by ammoxidation)
467	Processes for preparation of
100	saturated nitriles
480	.Nitrate esters or chalcogen
	analogues thereof (i.e., $(X-)N(-X)-X$
	bonded directly to carbon
	which carbon may be single
	bonded to any atom but may be
	multiple bonded only to
	carbon; the X's may be the
	same or diverse chalcogens)

481 ..With preservative or stabilizer

482	Benzene ring containing
483	Additional nitrogen or
	chalcogen containing
484	Plural (X=)N(=X)-X- groups
	containing
485	Four or more (X=)N(=X)-X-
	groups containing
486	Glyceryl trinitrate per se
	(i.e., trinitroglycerin)
487	Containing nitrogen bonded
	directly to carbon
488	.Nitrite esters or chalcogen
	analogues thereof (i.e.,
	compounds having (X=)N X-
	bonded directly to carbon,
	which carbon may be single
	bonded to any atom but may be
	multiple bonded only to
	carbon; the X's may be the
	same or diverse chalcogens)

FOREIGN ART COLLECTIONS

FOR 000 CLASS-RELATED FOREIGN DOCUMENTS

558 - 16 CLASS 558 ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES