This Class 544 is considered to be an integral part of Class 260 (see the Class 260 schedule for the position of this Class in schedule hierarchy). This Class retains all pertinent definitions and class lines of Class 260.

ORGANIC COMPOUNDS (CLASS 532, SUBCLASS 1)

. HETEROCYCLIC CARBON COMPOUNDS CONTAINING A HETERO RING HAVING CHALCOGEN (I.E., OXYGEN, SULFUR, SELENIUM, OR TELLURIUM) OR NITROGEN AS THE ONLY RING HETERO ATOMS (Class 540, subclass 1)

1. Hetero ring is six-membered having two or more ring hetero atoms of which at least one is nitrogen (e.g., selenazines, etc.)

2. Six-membered hetero ring consists of oxygen, sulfur, nitrogen and carbon (e.g., oxathiazines, etc.)

3. Six-membered hetero ring consists of sulfur, nitrogen, and carbon

4. Heavy metal or aluminum containing

5. Plural sulfurs in the six-membered hetero ring (e.g., dithiazines, etc.)

6. Spiro

7. Plural nitrogens in the six-membered hetero ring (e.g., thiatriazines, etc.)

8. Thiadiazines

9. Polycyclo ring system having the thiadiazine ring as one of the cyclos

10. Bicyclo ring system having the thiadiazine ring as one of the cyclos

11. Benzothiadiazines

12. 1,2,4-benzothiadiazines

13. Sulframyl or substituted sulframyl containing

14. Polycyclo ring system having the six-membered hetero ring as one of the cyclos

31. Phentothiazine as three cyclos of polycyclo ring system having at least four cyclos

32. Tricyclo ring system having the six-membered hetero ring as one of the cyclos

33. 1,2- or 2,1-Thiazine ring in the tricyclo ring system (e.g., hydrogenated 1,2-benzothiazine in tricyclo ring system, etc.)

34. Plural ring nitrogens in the tricyclo ring system

35. Phentothiazines (including hydrogenated)

36. Purification or recovery

37. Nitrogen bonded directly to phentothiazine ring system

38. Carbon bonded directly to ring nitrogen of phentothiazine ring system

39. Divalent chalcogen double bonded directly to the carbon

40. Additional chalcogen bonded directly to the carbon

41. Nitrogen containing substituent bonded to nitrogen of phentothiazine ring system

42. Nitrogen containing hetero ring in the nitrogen containing substituent (e.g., oxazole, etc.)

43. Plural hetero rings in the nitrogen containing substituent

44. Piperazine ring in the nitrogen containing substituent

45. Chalcogen in the nitrogen containing substituent

46. Chalcogen in the nitrogen containing substituent

47. Bicyclo ring system having the six-membered hetero ring as one of the cyclos

48. Three or more ring hetero atoms in the bicyclo ring system

49. Benzothiazines (including hydrogenated)

50. 1,3- or 3,1-benzothiazines

October 2004
511,4-benzothiazines
52Double bonded divalent chalcogen containing
531,3-thiazines
54Double bonded divalent chalcogen containing
55Additional hetero ring containing
561,4-thiazines
57Phosphorus containing
58.1Double bonded divalent chalcogen containing
58.2Divalent chalcogen double bonded directly to the thiazine ring
58.4Having -C(=X)-, wherein X is chalcogen, bonded directly to the thiazine ring
58.5Additional hetero ring containing
58.6Ring nitrogen in the additional hetero ring, which is six-membered
58.7Ring chalcogen in the additional hetero ring
59Thiomorpholines (i.e., fully hydrogenated 1,4-thiazines)
60Additional hetero ring containing
61The additional hetero ring is one of the cyclos in a bicyclo ring system
62Beno is the other cyclo
63Six-membered hetero ring consists of oxygen, nitrogen and carbon (e.g., 1,2-oxazines, etc)
64Heavy metal or aluminum containing
65Plural oxygens in the six-membered hetero ring
66Plural nitrogens in the six-membered hetero ring
671,3,5-oxadiazines
68Oxygen bonded directly to the six-membered hetero ring
69Boron or silicon containing
70Spiro
71Spiro oxazine
72Plural oxazine rings
73Polycyclo ring system having oxazine ring as at least one of the cyclos
74Plural 1,4-oxazine rings are cyclos in the polycyclo ring system
75Pentacyclo ring system having the oxazine rings as cyclos
76Plural nitrogens bonded directly to the pentacyclo ring system
77Acyclic nitrogen is bonded directly to a -C(=X)- group, wherein X is chalcogen
78Plural morpholine rings (i.e., plural fully hydrogenated 1,4-oxazine rings)
79Polycyclo ring system
80Ring nitrogen in the polycyclo ring system
81Four or more ring nitrogens in the polycyclo ring system
82Additional nitrogen containing hetero ring (e.g., thiazole, etc.)
83Triazine
84Phosphorus attached directly or indirectly to a morpholine ring by nonionic bonding
85Sulfur attached directly or indirectly to a morpholine ring by nonionic bonding
86Nitrogen attached directly or indirectly to a morpholine ring by nonionic bonding
87Oxygen attached directly or indirectly to a morpholine ring by nonionic bonding
881,3-Oxazines
89Polycyclo ring system having the oxazine ring as one of the cyclos
90Bicyclo ring system having the oxazine ring as one of the cyclos
91Three or more ring hetero atoms in the bicyclo ring system
92Chalcogen bonded directly to the oxazine ring
93Plural oxygens bonded directly to the oxazine ring
<table>
<thead>
<tr>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>Plural oxygens bonded directly to the oxazine ring 3,1-Benzoxazine-2,4-diones (including hydrogenated)</td>
</tr>
<tr>
<td>95</td>
<td>Three or more ring hetero atoms in the polycyclo ring system</td>
</tr>
<tr>
<td>96</td>
<td>Additional hetero ring containing</td>
</tr>
<tr>
<td>97</td>
<td>Chalcogen bonded directly to the oxazine ring</td>
</tr>
<tr>
<td>98</td>
<td>1,4-Oxazines</td>
</tr>
<tr>
<td>99</td>
<td>Polycyclo ring system having the oxazine ring as one of the cyclos</td>
</tr>
<tr>
<td>100</td>
<td>Anthrone or anthraquinone in the polycyclo ring system</td>
</tr>
<tr>
<td>101</td>
<td>Tricyclo ring system having the oxazine ring as one of the cyclos</td>
</tr>
<tr>
<td>102</td>
<td>Phenoxazines (including hydrogenated)</td>
</tr>
<tr>
<td>103</td>
<td>Plural nitrogens bonded directly to the phenoxazine</td>
</tr>
<tr>
<td>104</td>
<td>Sulfur containing</td>
</tr>
<tr>
<td>105</td>
<td>Bicyclo ring system having the oxazine ring as one of the cyclos (e.g., benzoxazines, etc.)</td>
</tr>
<tr>
<td>106</td>
<td>Morpholines (i.e., fully hydrogenated 1,4-oxazines)</td>
</tr>
<tr>
<td>107</td>
<td>Addition salts of morpholine which is unsubstituted or hydrocarbyl substituted only</td>
</tr>
<tr>
<td>108</td>
<td>N, N-dihydrocarbyl morpholinium</td>
</tr>
<tr>
<td>109</td>
<td>Hetero ring in ionically bonded moiety</td>
</tr>
<tr>
<td>110</td>
<td>Phosphorus or sulfur in ionically bonded moiety</td>
</tr>
<tr>
<td>111</td>
<td>Additional nitrogen containing hetero ring (e.g., thiazetidine, etc.)</td>
</tr>
<tr>
<td>112</td>
<td>Triazine ring</td>
</tr>
<tr>
<td>113</td>
<td>1,3,5-Triazine ring</td>
</tr>
<tr>
<td>114</td>
<td>Diazine ring</td>
</tr>
<tr>
<td>115</td>
<td>The diazine ring is one of the cyclos in a polycyclo ring system</td>
</tr>
<tr>
<td>116</td>
<td>The diazine ring is one of the cyclos in a bicyclo ring system</td>
</tr>
<tr>
<td>117</td>
<td>Three or more ring hetero atoms in the bicyclo ring system</td>
</tr>
<tr>
<td>118</td>
<td>Four or more ring nitrogens in the bicyclo ring system</td>
</tr>
<tr>
<td>119</td>
<td>Acyclic nitrogen containing</td>
</tr>
<tr>
<td>120</td>
<td>1,4-Diazine ring</td>
</tr>
<tr>
<td>121</td>
<td>Piperazine ring</td>
</tr>
<tr>
<td>122</td>
<td>1,3-Diazine ring</td>
</tr>
<tr>
<td>123</td>
<td>Oxygen bonded directly to the diazine ring</td>
</tr>
<tr>
<td>124</td>
<td>Six-membered ring consisting of one nitrogen and five carbons (e.g., pyridine, etc.)</td>
</tr>
<tr>
<td>125</td>
<td>The additional six-membered hetero ring is one of the cyclos in a polycyclo ring system</td>
</tr>
<tr>
<td>126</td>
<td>The additional six-membered hetero ring is one of the cyclos in a tricyclo ring system</td>
</tr>
<tr>
<td>127</td>
<td>The additional six-membered hetero ring is one of the cyclos in a bicyclo ring system</td>
</tr>
<tr>
<td>128</td>
<td>Quinoline or isoquinoline (including hydrogenated)</td>
</tr>
<tr>
<td>129</td>
<td>Piperidine ring</td>
</tr>
<tr>
<td>130</td>
<td>Double bonded divalent chalcogen containing</td>
</tr>
<tr>
<td>131</td>
<td>Double bonded divalent chalcogen containing</td>
</tr>
<tr>
<td>132</td>
<td>Five-membered hetero ring having two or more ring hetero atoms of which at least one is nitrogen</td>
</tr>
<tr>
<td>133</td>
<td>The five-membered hetero ring has at least sulfur and nitrogen as ring hetero atoms</td>
</tr>
<tr>
<td>134</td>
<td>Plural sulfurs or nitrogens in the five-membered hetero ring (e.g., thiaatriazole, etc.)</td>
</tr>
<tr>
<td>135</td>
<td>Benzothiazoles (including hydrogenated)</td>
</tr>
<tr>
<td>136</td>
<td>Polysulfide containing chain between morpholine ring and benzothiazole ring system</td>
</tr>
</tbody>
</table>
The five-membered hetero ring has at least oxygen and nitrogen as ring hetero atoms

Oxadiazole ring (including hydrogenated)

1,3-Diazole ring (including hydrogenated)

1,2-Diazole ring (including hydrogenated)

Five-membered hetero ring consisting of one nitrogen and four carbons

The five-membered hetero ring is one of the cyclos in a polycyclo ring system

The five-membered hetero ring is one of the cyclos in a bicyclo ring system

Chalcogen bonded directly to the bicyclo ring system

Sulfur containing hetero ring (e.g., thioxane, etc.)

Thiophene ring (including hydrogenated)

Additional oxygen containing hetero ring

Plural ring hetero atoms in the additional hetero ring

The additional hetero ring is six-membered

The additional six-membered hetero ring is one of the cyclos in a polycyclo ring system

The additional six-membered hetero ring is one of the cyclos in a bicyclo ring system

The additional hetero ring is five-membered

The five-membered hetero ring is one of the cyclos in a polycyclo ring system

Polycyclo-carbocyclic ring system having at least three cyclos

Tricyclo having three six-membered carbocyclic rings

Anthrone or anthraquinone

Phosphorus attached directly or indirectly to morpholine ring by nonionic bonding

Sulfur attached directly or indirectly to morpholine ring by nonionic bonding

Nitrogen attached directly or indirectly to morpholine ring by nonionic bonding

Double bonded divalent sulfur

Nitrogen attached directed or indirectly to morpholine ring by nonionic bonding

Cyano containing

Morpholine ring bonded directly to the nitrogen

Carbocyclic ring bonded directly to the nitrogen

Morpholine ring bonded directly to the carbocyclic ring

Nitro bonded directly to the carbocyclic ring

Oxygen double bonded and acyclic nitrogen bonded directly to the same carbon

A ring bonded directly to the carbon

Oxygen attached directly or indirectly to morpholine ring by nonionic bonding

The oxygen is in a -COO- group

Carbonyl of -COO- group bonded directly to a ring

The oxygen is bonded directly to a ring

Ether containing

The oxygen is in a carbonyl group

The carbonyl is bonded directly to nitrogen of morpholine ring

Ether containing

N-hydrocarbyl morpholines

Triazines

Heavy metal or aluminum containing

Asymmetrical (e.g., 1, 2, 4-triazines, etc.)

Polycyclo ring system having the asymmetrical triazine ring as one of the cyclos
184Four or more ring hetero
atoms in the polycyclo ring
system
185Hexamethylenetetramines
186Processes
187Anthrone or anthraquinone
containing
188Polycyclo ring system having
the anthrone or anthraquinone
and at least one hetero ring
as cyclos
189Sulfur containing
190Cyanuric chloride or
dichloroisocyanuric acid salt
191Processes utilizing cyanogen
chloride reactant
192Cyanuric acid per se or salt
thereof
193Trimerization process to form
the triazine ring
193.1Stilbene containing
193.2Plural triazine rings
containing
194Substituent nitrogen bonded
directly to carbon of the
triazine ring
195Phosphorus containing
196Three substituent nitrogens
bonded directly to the three
carbons of the triazine ring
197Additional ring containing
198Hetero ring
199Halogen or sulfur
containing
200Melamine per se, or salt
thereof
201Processes utilizing urea
or biuret reactant
202Processes utilizing
cynamide or dicyanamide
reactant
203Purification or recovery
204Two substituent nitrogens
bonded directly to two carbons
of the triazine ring
205Guanamines
206Additional ring containing
207Hetero ring
208Additional ring containing
209Hetero ring
210Sulfur containing
211Additional ring containing
212Hetero ring
213Sulfur containing
214Phosphorus containing
215Chalcogen or halogen
containing substituent
216Bonded to triazine ring
carbon
217Halogen bonded directly to
triazine ring carbon
218Chalcogen bonded directly
to triazine ring carbon
219Chalcogen bonded directly
to triazine ring carbon
220Divalent chalcogen double
bonded directly to triazine
ring carbon
221To three ring carbons
222Nitrogen containing
substituent
223To two ring carbons
224The six-membered hetero ring
consists of two nitrogens and
four carbons (e.g., 1,2-
diazines, etc.)
225Heavy metal or aluminum
containing
226Arsenic or zinc containing
227Mercury containing
228Purine containing
(including hydrogenated)
229Boron or silicon containing
230Spiro
231Spiro diazine
232Phosphorus attached directly
or indirectly to a 1,2-diazine
ing by nonionic bonding
233Polycyclo ring system having
a 1,2-diazine ring as one of
the cyclos
234Tricyclo ring system having
the 1,2-diazine ring as one of
the cyclos
235Bicyclo ring system having
the 1,2-diazine ring as one of
the cyclos
236At least three ring
nitrogens in the bicyclo ring
system
237Phthalazines (including
hydrogenated)
2381,2-diazines which contain an
additional hetero ring
239Chalcogen bonded directly to
ring carbon of a 1,2-diazine
ring
240Plural chalcogens bonded
directly
1. Halogen attached directly to the 1,2-diazine ring by nonionic bonding
2. 1,3-diazines
3. Phosphorus attached directly or indirectly to the diazine ring by nonionic bonding
4. Polycyclo ring system having the diazine ring as one of the cyclos
5. Polycyclo ring system having the diazine ring as one of the cyclos
6. Tetracyclo ring system having the diazine ring as one of the cyclos
7. Three or more ring hetero atoms in the tetracyclo ring system
8. Ring carbon is shared by three of the cyclos (e.g., anthrapirimidine, etc.)
9. Tricyclo ring system having the diazine ring as one of the cyclos
10. Three or more ring hetero atoms in the tricyclo ring system
11. Four or more ring nitrogens in the tricyclo ring system
12. Ring nitrogen is shared by two of the cyclos
13. Bicyclo ring system having the diazine ring as one of the cyclos
14. At least five ring hetero atoms in the bicyclo ring system
15. Four ring hetero atoms in the bicyclo ring system
16. Four ring nitrogens in the bicyclo ring system
17. Pteridines (including hydrogenated)
18. Nitrogen bonded directly to the pteridine ring system
19. Plural nitrogens bonded directly to the pteridine ring system
20. At 2- and 4-positions
21. Pteroyl per se or having -C(=X)-, wherein X is chalcogen, bonded directly to acyclic nitrogen of otherwise unsubstituted pteroyl
22. The other cyclo in the bicyclo ring system is five-membered
23. Ring nitrogen is shared by two cyclos
24. Purines (including hydrogenated)
25. Chalcogen bonded directly to ring carbon of the purine ring system
26. At 2-, 6-, and 8-positions
27. At 2- and 6-positions (e.g., theophyllines, etc.)
28. Additional polycyclo ring system, which is not another purine, having a hetero ring as one of the cyclos
29. Additional hetero ring which is unsaturated and is not one of the cyclos of a purine ring system
30. Plural ring nitrogens in the additional hetero ring
31. Having -C(=X)-, wherein X is chalcogen attached directly or indirectly to the purine ring system by nonionic bonding or halogen bonded directly at 8-position (e.g., theophylline acetate, 8-chlorotheophylline, etc.)
32. Nitrogen attached directly or indirectly to the purine ring system by nonionic bonding
33. Positions other than 2- and 6- are unsubstituted or hydrocarbyl or hydrocarboyl substituted only (e.g., theophylline, etc.)
34. Caffeine per se, theobromine per se, or salt thereof
35. Recovery of caffeine per se, theobromine per se, or salt thereof, from natural or waste material
276Nitrogen attached directly or indirectly to the purine ring system by nonionic bonding
277Nitrogen attached directly or indirectly to the purine ring system by nonionic bonding
278Three ring hetero atoms in the bicyclo ring system
279Three ring nitrogens in the bicyclo ring system
280The other cyclo in the bicyclo ring system is five-membered
281Ring nitrogen is shared by the two cyclos
282Ring nitrogen is shared by two cyclos
283The other cyclo in the bicyclo ring system is a benzene ring (e.g., quinazoline, etc.)
284Additional nitrogen containing unsaturated heterocyclic ring (e.g., thiazole, etc.)
285Chalcogen bonded directly at 2- and 4-positions
286Chalcogen bonded directly at 2-position
287Chalcogen bonded directly at 4-position
288Sulfur bonded directly at 6-position
289Carbocyclic ring bonded directly at 2-position
290Carbocyclic ring bonded directly at 3-position
291Nitrogen bonded directly at 2- and 4-positions
292Nitrogen bonded directly at 2-position
293Nitrogen bonded directly at 4-position
294Polycyclo-carbocyclic ring system having at least three cyclos
295Plural diazine rings
296Plural 1,3-diazine rings
297Nitrogen attached directly at 2-position by nonionic bonding and sulfur bonded directly to the nitrogen
298Chalcogen bonded directly to diazine ring carbon
299At 2-, 4-, and 6-positions (e.g., barbituric acid, etc.)
300Additional hetero ring which is unsaturated
301Nitrogen attached directly or indirectly to the diazine ring by nonionic bonding
302Additional chalcogen attached directly or indirectly to the diazine ring by nonionic bonding
303Halogen attached directly or indirectly to the diazine ring by nonionic bonding
304Alicyclic ring attached directly or indirectly to the diazine ring by nonionic bonding
305Phenyl bonded directly at 5-position
306Acyclic ethylenic or acetylenic unsaturation containing
307Plural alkyl groups bonded directly at 5-position
308Plural diverse alkyl groups bonded directly at 5-position
309At 2-position and at 4- or 6-position
310Additional hetero ring which is unsaturated
311Nitrogen attached directly or indirectly to the diazine ring by nonionic bonding
3125-position is unsubstituted or alkyl substituted only
313Halogen attached directly to the diazine ring by nonionic bonding
314Additional chalcogen attached directly or indirectly to the diazine ring by nonionic bonding
315At 2-position
316Nitrogen attached directly or indirectly to the diazine ring by nonionic bonding
317The nitrogen is bonded directly at 4- or 6-position
318Additional chalcogen attached directly or indirectly to the diazine ring by nonionic bonding

October 2004
544 - 8 CLASS 544 ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES

319At 4- or 6-position
320Nitrogen attached directly at 2-position by nonionic bonding
321Carbocyclic ring containing
322Nitrogen attached directly to diazine ring by nonionic bonding
323At 2-position and at 4- or 6-position
324Additional hetero ring which is unsaturated
325Substituent on 5-position contains carbocyclic ring
326At 4- or 6-position
327Sulfur attached indirectly to the diazine ring by nonionic bonding (e.g., thiamines, etc.)
328Additional hetero ring which is unsaturated
329Carbonyl attached directly or indirectly to the diazine ring by nonionic bonding
330At 2-position
331Additional hetero ring which is unsaturated
332Chalcogen attached indirectly to the diazine ring by nonionic bonding
333Additional hetero ring which is unsaturated
334Halogen attached directly to the diazine ring by nonionic bonding
335Chalcogen attached indirectly to the diazine ring by nonionic bonding
3361,4-diazines
337Phosphorus attached directly or indirectly to the diazine ring by nonionic bonding
338Polycyclo ring system having the diazine ring as one of the cyclos
339Heptacyclo ring system having the diazine ring as one of the cyclos (e.g., indanthrones, etc.)
340Chalcogen attached indirectly to the heptacyclo ring system by nonionic bonding
341Halogen, nitrogen, or carbon attached directly to the heptacyclo ring system by nonionic bonding
342Pentacyclo ring system having the diazine ring as one of the cyclos
343Tetracyclo ring system having the diazine ring as one of the cyclos (e.g., benzophenazines, etc.)
344Tricyclo ring system having the diazine ring as one of the cyclos
345Three or more ring hetero atoms in the tricyclo ring system
346Ring nitrogen is shared by two of the cyclos (e.g., ergot, alkaloids, etc.)
347Phenazines (including hydrogenated)
348Nitrogen attached directly to the phenazine ring system by nonionic bonding
349Bicyclo ring system having the diazine ring as one of the cyclos
350Three or more ring hetero atoms in the bicyclo ring system
351Triethylene diamines
352Process of forming, purifying, or recovering triethylene diamine per se, or salt thereof
353Quinoxalines (including hydrogenated)
354Chalcogen bonded directly to diazine ring carbon
355Having -C(=X)-, wherein X is chalcogen, bonded directly to diazine ring carbon
356Halogen or nitrogen attached directly to diazine ring carbon by nonionic bonding
357Plural diazine rings
358Piperazines (i.e., fully hydrogenated 1,4-diazines)
359Additional hetero ring containing
360Six-membered ring consisting of one nitrogen and five carbons (e.g., pyridine, etc.)
The additional six-membered hetero ring is one of the cyclos in a polycyclo ring system.

The additional six-membered hetero ring is one of the cyclos in a bicyclo ring system.

Quinoline or isoquinoline (including hydrogenated).

At least three hetero rings containing at least one nitrogen.

Five-membered hetero ring having two or more ring hetero atoms of which at least one is nitrogen.

Ring chalcogen in the five-membered hetero ring.

The five-membered hetero ring containing one of the cyclos in a polycyclo ring system.

1,3-oxazole ring or 1,3-thiazole ring (including hydrogenated).

1,3-diazole ring (including hydrogenated).

1,2-diazole ring (including hydrogenated).

Five-membered hetero ring consisting of one nitrogen and four carbons.

The five-membered hetero ring containing one of the cyclos in a bicyclo ring system.

Ring chalcogen in the additional hetero ring.

Polycyclo ring system having the additional hetero ring as one of the cyclos.

Bicyclo ring system having the additional hetero ring as one of the cyclos.

Plural ring chalcogens in the bicyclo ring system.

Plural ring chalcogens in the polycyclo ring system or the piperazine ring bonded directly to the polycyclo ring system.

The additional hetero ring is five-membered and unsaturated (e.g., thienyl piperazines, etc.).

Polycyclo-carbocyclic ring system having at least three cyclos.

Piperazine ring bonded directly to the polycyclo-carbocyclic ring system.

Nitrogen attached directly to the piperazine ring by nonionic bonding.

Chalcogen attached directly to piperazine ring nitrogen by nonionic bonding.

Chalcogen bonded directly to piperazine ring carbon.

Plural chalcogens bonded directly to piperazine ring carbons.

Having -C(=X)-, wherein X is chalcogen, bonded directly to ring carbon of the additional six-membered hetero ring (e.g., nicotinic acid, etc.).

The five-membered hetero ring is one of the cyclos in a bicyclo ring system.

Ring chalcogen in the additional hetero ring.

Polycyclo-carbocyclic ring system having at least three cyclos.

At least three hetero rings containing hydrogenated.

1,3-oxazole ring or 1,3-thiazole ring (including hydrogenated).

1,3-diazole ring (including hydrogenated).

1,2-diazole ring (including hydrogenated).

Five-membered hetero ring consisting of one nitrogen and four carbons.

The five-membered hetero ring containing one of the cyclos in a bicyclo ring system.

Ring chalcogen in the additional hetero ring.

Polycyclo ring system having the additional hetero ring as one of the cyclos.

Bicyclo ring system having the additional hetero ring as one of the cyclos.

Plural ring chalcogens in the bicyclo ring system.

Plural ring chalcogens in the polycyclo ring system or the piperazine ring bonded directly to the polycyclo ring system.

The additional hetero ring is five-membered and unsaturated (e.g., thienyl piperazines, etc.).

Polycyclo-carbocyclic ring system having at least three cyclos.

Piperazine ring bonded directly to the polycyclo-carbocyclic ring system.

Nitrogen attached directly to the piperazine ring by nonionic bonding.

Chalcogen attached directly to piperazine ring nitrogen by nonionic bonding.

Chalcogen bonded directly to piperazine ring carbon.

Plural chalcogens bonded directly to piperazine ring carbons.

Having -C(=X)-, wherein X is chalcogen, bonded directly to the piperazine ring.

Plural -C(=X)- groups bonded directly to the piperazine ring.

Chalcogen or acyclic nitrogen bonded directly to at least one of the -C(=X) groups.

The -C(=X)- is part of a -C(=X)X- group, wherein the X's are the same or diverse chalcogens.

Halogen or acyclic nitrogen bonded directly to the -C(=X)- group.

Carbocyclic ring containing.

Phenyl or naphthyl bonded directly to ring nitrogen of the piperazine ring.

Acyclic nitrogen bonded directly to a -C(=X)- group, wherein X is chalcogen.

The other ring nitrogen has a substituent which includes chalcogen single bonded to acyclic carbon.

The other ring nitrogen is unsubstituted or alkyl substituted only, or salt thereof.

Plural carbocyclic rings bonded directly to the same acyclic carbon.
CLASS 544 ORGANIC COMPOUNDS -- PART OF THE CLASS 532-570 SERIES

397Chalcogen bonded directly to the carbon
398Chalcogen attached indirectly to the piperazine ring by nonionic bonding
399The chalcogen, X, is in a -C(=X)= group
400Acyclic nitrogen bonded directly to the -C(=X)= group
401The chalcogen is single bonded to both acyclic carbon and hydrogen
402Nitrogen attached indirectly to the piperazine ring by nonionic bonding
403Carbocyclic ring containing
404N-hydrocarbyl piperazines
405Additional hetero ring which is unsaturated
406Having -C(=X)=, wherein X is chalcogen, bonded directly to the diazine ring
407Nitrogen attached directly to the diazine ring by nonionic bonding
408Chalcogen bonded directly to diazine ring carbon
409Halogen attached directly to the diazine ring by nonionic bonding
410Unsubstituted or hydrocarbyl substituted only, or salt thereof

FOREIGN ART COLLECTIONS

FOR 000 CLASS-RELATED FOREIGN DOCUMENTS

October 2004