G11C STATIC STORES (information storage based on relative movement between record carrier and transducer G11B; semiconductor devices for storage H01L, e.g. H01L 27/108 - H01L 27/11597; pulse technique in general H03K, e.g. electronic switches H03K 17/00)

NOTES
1. This subclass covers devices or arrangements for storage of digital or analogue information in which no relative movement takes place between an information storage element and a transducer; which incorporate a selecting-device for writing-in or reading-out the information into or from the store.
2. This subclass does not cover elements not adapted for storage and not provided with such means as referred to in Note (3) below, which elements are classified in the appropriate subclass, e.g. of H01, H03K.
3. In this subclass, the following terms are used with the meaning indicated:
 • “storage element” is an element which can hold at least one item of information and is provided with means for writing-in or reading-out this information;
 • “memory” is a device, including storage elements, which can hold information to be extracted when desired.

WARNINGS
1. The following IPC groups are not in the CPC scheme. The subject matter for these IPC groups is classified in the following CPC groups:
 - G11C 8/02 covered by G11C 8/00, H03K 17/00
 - G11C 11/4193 covered by G11C 11/00
 - G11C 11/4195 covered by G11C 11/00
 - G11C 11/4197 covered by G11C 11/00
2. In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme.

Details of stores covered by G11C 11/00
5/00 5/08 . . for interconnecting magnetic elements, e.g. toroidal cores
5/05 5/08 . . for interconnecting capacitors
5/02 5/10 . . Apparatus or processes for interconnecting storage elements, e.g. for threading magnetic cores
5/04 5/12 . . Power supply arrangements (in general G05F, H02J, H02M), [e.g. Power down/chip (de)selection, layout of wiring/power grids, multiple supply levels]
5/04 5/14 . . {Battery and back-up supplies (back-up supplies per se H02J 9/061)}
5/05 5/14 . . {Contactless power supplies, e.g. RF, induction, IR (in general H02J 5/00)}
5/05 5/14 . . {Detection of memory cassette insertion/removal; Continuity checks of supply and ground lines (in general G01R 31/50); Detection of supply variations/interruptions/levels (G11C 5/148 takes precedence); Switching between alternative supplies (back-up supplies per se H02J 9/061, G11C 5/141 takes precedence)}
5/05 5/14 . . {Detection of predetermined disconnection or reduction of power supply, e.g. power down or power standby}
5/05 5/14 . . {Applications of charge pumps (charge pumps per se H02M 3/07); Boosted voltage circuits (for logic circuits or inverting circuits H03K 19/00); Clamp circuits therefor (G11C 5/141 takes precedence)}
Arrangements for writing information into, or reading information out from, a digital store (G11C 5/00) takes precedence; auxiliary circuits for stores using semiconductor devices G11C 11/4063, G11C 11/413)

- 7/005 [with combined beam-and individual cell access]
- 7/004 [with means for avoiding parasitic signals]
- 7/006 [Sense amplifiers; Associated circuits, (e.g. timing or triggering circuits) (amplifiers per se H03F, H03K)]
- 7/002 [Differential amplifiers of non-latching type, e.g. comparators, long-tailed pairs]
- 7/003 [Differential amplifiers of latching type]
- 7/001 [Single-ended amplifiers]
- 7/008 [Control thereof]
- 7/10 [Input/output (I/O) data interface arrangements, e.g. I/O data control circuits, I/O data buffers]
- 7/1003 [Interface circuits for daisy chain or ring bus memory arrangements]
- 7/1006 [Data managing, e.g. manipulating data before writing or reading out, data bus switches or control circuits therefor]
- 7/1009 [Data masking during input/output]
- 7/1012 [Data reordering during input/output, e.g. crossbars, layers of multiplexers, shifting or rotating]
- 7/1015 [Read-write modes for single port memories, i.e. having either a random port or a serial port]
- 7/1018 [Serial bit line access mode, e.g. using bit line address shift registers, bit line address counters, bit line burst counters]
- 7/1021 [Page serial bit line access mode, i.e. using an enabled row address stroke pulse with its associated word line address and a sequence of enabled column address stroke pulses each with its associated bit line address]
- 7/1024 [Extended data output (EDO) mode, i.e. keeping output buffer enabled during an extended period of time]
- 7/1027 [Static column decode serial bit line access mode, i.e. using an enabled row address stroke pulse with its associated word line address and a sequence of enabled bit line addresses]
- 7/103 [using serially addressed read-write data registers (G11C 7/1036 takes precedence)]
- 7/1033 [using data registers of which only one stage is addressed for sequentially outputting data from a predetermined number of stages, e.g. nibble read-write mode]
- 7/1036 [using data shift registers]

Using pipelining techniques, i.e. using latches between functional memory parts, e.g. row/column decoders, I/O buffers, sense amplifiers)

- 7/1042 [using interleaving techniques, i.e. read-write of one part of the memory while preparing another part]
- 7/1045 [Read-write mode select circuits]
- 7/1048 [Data bus control circuits, e.g. precharging, presetting, equalising]
- 7/1051 [Data output buffers, data output registers, data output level conversion circuits]
- 7/1054 [Optical output buffers]
- 7/1057 [Data output buffers, e.g. comprising level conversion circuits, circuits for adapting load]
- 7/106 [Data output latches]
- 7/1063 [Control signal output circuits, e.g. status or busy flags, feedback command signals]
- 7/1066 [Output synchronization]
- 7/1069 [I/O lines read out arrangements (global or local sense amplifiers for bit lines G11C 7/00)]
- 7/1072 [for memories with random access ports synchronised on clock signal pulse trains, e.g. synchronous memories, self timed memories]
- 7/1075 [for multiport memories each having random access ports and serial ports, e.g. video RAM]
- 7/1078 [Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits]
- 7/1081 [Optical input buffers]
- 7/1084 [Data input buffers, e.g. comprising level conversion circuits, circuits for adapting load]
- 7/1087 [Data input latches]
- 7/109 [Control signal input circuits]
- 7/1093 [Input synchronization]
- 7/1096 [Write circuits, e.g. I/O line write drivers]

- 7/12 [Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging, equalising circuits, for bit lines]
- 7/14 [Dummy cell management; Sense reference voltage generators]
- 7/16 [Storage of analogue signals in digital stores using an arrangement comprising analogue/digital [A/D] converters, digital memories and digital/analogue [D/A] converters]
- 7/18 [Bit line organisation; Bit line lay-out]
- 7/20 [Memory initialisation circuits, e.g. when powering up or down, memory clear, latent image memory]
- 7/22 [Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management]
- 7/222 [Clock generating, synchronizing or distributing circuits within memory device]
- 7/225 [Clock input buffers]
- 7/227 [Timing of memory operations based on dummy memory elements or replica circuits]
- 7/24 [Memory cell safety or protection circuits, e.g. arrangements for preventing inadvertent reading or writing; Status cells; Test cells]

Arrangements for selecting an address in a digital store (for stores using transistors G11C 11/407, G11C 11/413; (switching or gating circuits for general use H03K 17/00))
8/05 . [with travelling wave access]
8/04 . using a sequential addressing device, e.g. shift register, counter (using first in first out [FIFO] registers for changing speed of digital data flow G06F 5/00; using last in first out [LIFO] registers for processing digital data by operating upon their order G06F 7/00)
8/06 . Address interface arrangements, e.g. address buffers (level conversion circuits in general H03K 19/0175)
8/08 . Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
8/10 . Decoders
8/12 . Group selection circuits, e.g. for memory block selections, chip selection, array selection
8/14 . Word line organisation; Word line lay-out
8/16 . Multiple access memory array, e.g. addressing one storage element via at least independent addressing line groups (multipoint memories in general G11C 7/1075)
8/18 . Address timing or clocking circuits; Address control signal generation or management, e.g. for row address strobe [RAS] or column address strobe [CAS] signals
8/20 . Address safety or protection circuits, i.e. arrangements for preventing unauthorised or accidental access

11/00 Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor (G11C 14/00 - G11C 21/00 take precedence)
11/005 . [comprising combined but independently operative RAM-ROM, RAM-PROM, RAM-EPROM cells]

NOTE
Group G11C 11/56 takes precedence over groups G11C 11/02 - G11C 11/54

11/02 . using magnetic elements (using multibit magnetic storage elements G11C 11/5607; counters with magnetic elements H03K 23/76; pulse generators, static switches, logic circuits with such elements H03K 3/45, H03K 17/80, H03K 19/16; measurement of magnetic variables G01R 33/00))
11/04 . using storage elements having cylindrical form, e.g. rod, wire (G11C 11/06085, G11C 11/12, G11C 11/14 take precedence)
11/06 . using single-aperture storage elements, e.g. ring core; using multi-aperture plates in which each individual aperture forms a storage element
11/06007 . [using a single aperture or single magnetic closed circuit]

NOTE
Provisionally contains the following details; control write-, read-, address circuitry (pulse generators in general H03K 5/00, H03K 17/00); arrangements for temperature compensation; checking of the correct functioning and repair arrangements (checking methods in general G06F 11/00, G06F 11/28; testing magnetic elements per se G01R 33/00); magnetic properties, choice of materials or the like (materials per se H01F 1/00)
11/16 . . . using elements in which the storage effect is based on magnetic spin effect ((sensors using magnetoresistive multilayer structures G01R 33/093; thin layer magnetic read heads for magnetic discs G11B 5/31; non-reciprocal magnetic elements in waveguides H01P; composition of ferromagnetic material H01F 1/00; gyrators H03H 7/002))

11/161 . . . [details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell]

11/165 . . . [Auxiliary circuits]

11/1653 . . . [Address circuits or decoders]

11/1655 . . . [Bit-line or column circuits]

11/1657 . . . [Word-line or row circuits]

11/1659 . . . [Cell access]

11/1673 . . . [Reading or sensing circuits or methods]

11/1675 . . . [Writing or programming circuits or methods]

11/1677 . . . [Verifying circuits or methods]

11/1693 . . . [Timing circuits or methods]

11/1695 . . . [Protection circuits or methods]

11/1697 . . . [Power supply circuits]

11/18 . . . using Hall-effect devices

11/19 . . . using non-linear reactive devices in resonant circuits

11/20 . . . using parametrons, i.e. ferroresonant triggers; with overcritica feedback magnetic amplifiers or similar (pulse generators using parametrons and ferroresonant devices H03K 19/162, H03K 19/164; counters using such elements H03K 23/001)

11/21 . . . using electric elements

11/22 . . . using ferroelectric elements (using multibit ferroelectric storage elements G11C 11/5657; pulse generators using ferroelectric elements H03K 3/45; counters using such elements H03K 23/76)

11/221 . . . [using ferroelectric capacitors]

11/223 . . . [using MOS with ferroelectric gate insulating film]

11/225 . . . [Auxiliary circuits]

11/2253 . . . [Address circuits or decoders]

11/2255 . . . [Bit-line or column circuits]

11/2257 . . . [Word-line or row circuits]

11/2259 . . . [Cell access]

11/2273 . . . [Reading or sensing circuits or methods]

11/2275 . . . [Writing or programming circuits or methods]

11/2277 . . . [Verifying circuits or methods]

11/2293 . . . [Timing circuits or methods]

11/2295 . . . [Protection circuits or methods]

11/2297 . . . [Power supply circuits]

11/23 . . . using electrostatic storage on a common layer, e.g. Forrester-Haef tubes, (William tubes) (G11C 11/22 takes precedence; construction of Williams tubes H01J 31/00))

11/24 . . . using capacitors (G11C 11/22 takes precedence; using a combination of semiconductor devices and capacitors G11C 11/34, e.g. G11C 11/40)

11/26 . . . using discharge tubes (counters using such elements H03K 25/00)

11/265 . . . [counting tubes, e.g. decatrons, trochoitrons (counters using such elements H03K 29/00)]

11/28 . . . using gas-filled tubes (counting tubes G11C 11/265; pulse generators, electronic switches, logic circuits using such elements H03K 3/37, H03K 17/52, H03K 19/04)

11/30 . . . using vacuum tubes (counting tubes G11C 11/265; pulse generators, electronic switches, logic circuits using such elements H03K 3/37, H03K 17/52, H03K 19/04)

11/34 . . . using semiconductor devices (processes or apparatus for the manufacture or treatment of semiconductor or solid state devices H01L 21/00; integrated circuit devices H01L 27/00; generating electric pulses, e.g. bistable devices using semiconductor devices H03K 3/00)

11/35 . . . with charge storage in a depletion layer, e.g. charge coupled devices (in shift registers G11C 19/282)

11/36 . . . using diodes, e.g. as threshold elements, i.e. diodes assuming a stable ON-stage when driven above their threshold (S- or N-characteristic)

11/38 . . . using tunnel diodes

11/39 . . . using thyristors (the avalanche or negative resistance type, e.g. PNPN, SCR, SCS, UJT)

11/40 . . . using transistors

11/401 . . . forming cells needing refreshing or charge regeneration, i.e. dynamic cells

11/402 . . . with charge regeneration individual to each memory cell, i.e. internal refresh

11/4023 . . . [using field effect transistors]

11/4026 . . . [using bipolar transistors]

11/403 . . . with charge regeneration common to a multiplicity of memory cells, i.e. external refresh

11/404 . . . with one charge-transfer gate, e.g. MOS transistor, per cell

11/4045 [using a plurality of serially connected access transistors, each having a storage capacitor]

WARNING

Not complete, see also G11C 11/404

11/405 . . . with three charge-transfer gates, e.g. MOS transistors, per cell

11/406 . . . Management or control of the refreshing or charge-regeneration cycles

11/40603 [Arbitration, priority and concurrent access to memory cells for read/write or refresh operations]

11/40607 [Refresh operations in memory devices with an internal cache or data buffer]

11/40611 [External triggering or timing of internal or partially internal refresh operations, e.g. auto-refresh or CAS-before-RAS triggered refresh]

11/40615 [Internal triggering or timing of refresh, e.g. hidden refresh, self refresh, pseudo-SRAMs]

11/40618 [Refresh operations over multiple banks or interleaving]

11/40622 [Partial refresh of memory arrays]

11/40626 [Temperature related aspects of refresh operations]
G11C

11/4063 Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
11/4067 for memory cells of the bipolar type
11/407 for memory cells of the field-effect type
11/4072 Circuits for initialisation, powering up or down, clearing memory or presetting
11/4074 Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits
11/4076 Timing circuits (for regeneration management G11C 11/406)
11/4078 Safety or protection circuits, e.g. for preventing inadvertent or unauthorised reading or writing; Status cells; Test cells (protection of memory contents during checking or testing G11C 29/52)
11/408 Address circuits
11/4082 \[Address Buffers; level conversion circuits\]
11/4085 \[Word line control circuits, e.g. word line drivers, - boosters, - pull-up, - pull-down, - precharge\]
11/4087 \[Address decoders, e.g. bit- or word line decoders; Multiple line decoders\]
11/409 Read-write (R-W) circuits
11/4091 Sense or sense/refresh amplifiers, or associated sense circuitry, e.g. for coupled bit-line precharging, equalising or isolating
11/4093 Input/output (I/O) data interface arrangements, e.g. data buffers
11/4094 Bit-line management or control circuits
11/4096 Input/output (I/O) data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches
11/4097 Bit-line organisation, e.g. bit-line layout, folded bit lines
11/4099 Dummy cell treatment; Reference voltage generators
11/41 forming \[static\] cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
11/411 using bipolar transistors only
11/4113 \{with at least one cell access to base or collector of at least one of said transistors, e.g. via access diodes, access transistors\}
11/4116 \{with at least one cell access via separately connected emitters of said transistors or via multiple emitters, e.g. T2L, ECL\}
11/412 using field-effect transistors only \{(latent image memory G11C 7/20; multi-port cells G11C 8/16)\}
11/4125 \{Cells incorporating circuit means for protection against loss of information (in general G11C 5/005)\}
11/413 Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing, power reduction \{(in general G11C 5/00 - G11C 8/00)\}
11/414 for memory cells of the bipolar type
11/415 Address circuits
11/416 Read-write \[R-W\] circuits
11/417 for memory cells of the field-effect type
11/418 Address circuits
11/419 Read-write \[R-W\] circuits
11/42 \{using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically - or optically - \[feedback -\] coupled\}
11/44 \{using superconductive elements, e.g. cryotron\}
11/46 \{using thermoelectric elements\}
11/48 \{using displacable coupling elements, e.g. ferromagnetic cores, to produce change between different states of mutual or self-inductance \{contains no documents; see G11C 17/00 and subgroups\}\}
11/50 \{using actuation of electric contacts to store the information \{mechanical stores G11C 23/00; switches providing a selected number of consecutive operations of the contacts by a single manual actuation of the operating part H01H 41/00\}\}
11/52 \{using electromagnetic relays\}
11/54 \{using elements simulating biological cells, e.g. neuron\}
11/56 \{using storage elements with more than two stable states represented by steps, \{e.g. of voltage, current, phase, frequency \{counting arrangements comprising multi-stable elements of this type H03K 25/00, H03K 29/00\}\}
11/5607 \{using magnetic storage elements\}
11/5614 \{using conductive bridging RAM [CBRAM] \{or programming metallization cells [PMC]\}\}
11/5621 \{using charge storage in a floating gate\}
11/5628 \{Programming or writing circuits; Data input circuits\}
11/5635 \{Erasing circuits\}
11/5642 \{Sensing or reading circuits; Data output circuits\}
11/565 \{using capacitive charge storage elements\}
11/5657 \{using ferroelectric storage elements\}
11/5664 \{using organic memory material storage elements\}
11/5671 \{using charge trapping in an insulator\}
11/5678 \{using amorphous/crystalline phase transition storage elements\}
11/5685 \{using storage elements comprising metal oxide memory material, e.g. perovskites\}
11/5692 \{read-only digital stores using storage elements with more than two stable states\}
13/00 Digital stores characterised by the use of storage elements not covered by groups G11C 11/00, G11C 23/00 - G11C 25/00
13/0002 \{using resistive RAM \[RRAM\] elements\}
13/0004 \{comprising amorphous/crystalline phase transition cells\}
13/0007 \{comprising metal oxide memory material, e.g. perovskites\}
13/0009 \{RRAM elements whose operation depends upon chemical change\}
13/0011 . . . [comprising conductive bridging RAM [CBRAM] or programming metallization cells [PMCs]]
13/0014 . . . [comprising cells based on organic memory material]
13/0016 . . . [comprising polymers]
13/0019 . . . [comprising bio-molecules]
13/0021 . . . [Auxiliary circuits]
13/0023 . . . [Address circuits or decoders]
13/0026 . . . [Bit-line or column circuits]
13/0028 . . . [Word-line or row circuits]
13/003 . . . [Cell access]
13/0033 . . . [Disturbance prevention or evaluation; Refreshing of disturbed memory data]
13/0035 . . . [Evaluating degradation, retention or wearout, e.g. by counting writing cycles]
13/0038 . . . [Power supply circuits]
13/004 . . . [Reading or sensing circuits or methods]
2013/0042 . . . [Read using differential sensing, e.g. bit line [BL] and bit line bar [BLB]]
2013/0045 . . . [Read using current through the cell]
2013/0047 . . . [Read destroying or disturbing the data]
2013/005 . . . [Read using potential difference applied between cell electrodes]
2013/0052 . . . [Read process characterized by the shape, e.g. form, length, amplitude of the read pulse]
2013/0054 . . . [Read is performed on a reference element, e.g. cell, and the reference sensed value is used to compare the sensed value of the selected cell]
2013/0057 . . . [Read done in two steps, e.g. wherein the cell is read twice and one of the two read values serving as a reference value]
13/0059 . . . [Security or protection circuits or methods]
13/0061 . . . [Timing circuits or methods]
13/0064 . . . [Verifying circuits or methods]
2013/0066 . . . [Verify correct writing whilst writing is in progress, e.g. by detecting onset or cessation of current flow in cell and using the detector output to terminate writing]
13/0069 . . . [Writing or programming circuits or methods]
2013/0071 . . . [Write using write potential applied to access device gate]
2013/0073 . . . [Write using bi-directional cell biasing]
2013/0076 . . . [Write operation performed depending on read result]
2013/0078 . . . [Write using current through the cell]
2013/008 . . . [Write by generating heat in the surroundings of the memory material, e.g. thermowrite]
2013/0083 . . . [Write to perform initialising, forming process, electro forming or conditioning]
2013/0085 . . . [Write a page or sector of information simultaneously, e.g. a complete row or word line]
2013/0088 . . . [Write with the simultaneous writing of a plurality of cells]
2013/009 . . . [Write using potential difference applied between cell electrodes]
2013/0092 . . . [Write characterized by the shape, e.g. form, length, amplitude of the write pulse]
2013/0095 . . . [Write using strain induced by, e.g. piezoelectric, thermal effects]
13/0097 . . . [Erasing, e.g. resetting, circuits or methods]
13/002 . . . [using elements whose operation depends upon chemical change (G11C 13/0009 takes precedence); using electrochemical charge G11C 11/00]
13/0025 . . . [using fullerenes, e.g. C60, or nanotubes, e.g. carbon or silicon nanotubes]
13/004 . . . [using optical elements [using other beam accessed elements, e.g. electron, ion beam [using electrostatic memory tubes G11C 11/23; recording of television signals H04N 5/76]]
13/0041 . . . [using photochromic storage elements (G11C 13/042 takes precedence)]
13/0042 . . . [using information stored in the form of an interference pattern (hologram, lippman; holography G03H, G02B 5/32)]
13/0043 . . . [using magnetic-optical storage elements]
13/0044 . . . [using electro-optical elements]
13/0045 . . . [using photochromatic storage elements]
13/0046 . . . [using other storage elements storing information in the form of an interference pattern]
13/0047 . . . [using electro-optical elements (G11C 13/042 takes precedence)]
13/0048 . . . [using other optical storage elements]
13/006 . . . [using magneto-optical elements (G11C 13/042 takes precedence) magneto-optics in general G02F]
14/00 Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down ([bistable elements storing the actual state when the supply voltage fails H03K 3/02335, H03K 3/0375, H03K 3/2865, H03K 3/356008)]
14/0009 . . . [in which the volatile element is a DRAM cell]
14/0018 . . . [whereby the nonvolatile element is an EEPROM element, e.g. a floating gate or metal-nitride-oxide-silicon [MNOS] transistor]
14/0027 . . . [and the nonvolatile element is a ferroelectric element]
14/0036 . . . [and the nonvolatile element is a magnetic RAM [MRAM] element or ferromagnetic cell]
14/0045 . . . [and the nonvolatile element is a resistive RAM element, i.e. programmable resistors, e.g. formed of phase change or chalcogenide material]
14/0054 . . . [in which the volatile element is a SRAM cell]
14/0063 . . . [and the nonvolatile element is an EEPROM element, e.g. a floating gate or MNOS transistor]
14/0072 . . . [and the nonvolatile element is a ferroelectric element]
14/0081 . . . [and the nonvolatile element is a magnetic RAM [MRAM] element or ferromagnetic cell]
14/009 . . . [and the nonvolatile element is a resistive RAM element, i.e. programmable resistors, e.g. formed of phase change or chalcogenide material]
15/00 Digital stores in which information comprising one or more characteristic parts is written into the store and in which information is read-out by searching for one or more of these characteristic parts, i.e. associative or content-addressed stores (in which information is addressed to a specific location G11C 11/00; selection information using addressing means, e.g. hashing, tree addressing, chaining G06F 11/22; information retrieval systems using a computer G06F 16/00))

16/02 . . . using magnetic elements
15/04 . . . using semiconductor elements
15/043 . . . [using capacitive charge storage elements]
15/046 . . . [using non-volatile storage elements]
15/06 . . . using cryogenic elements

16/00 Erasable programmable read-only memories (G11C 14/00 takes precedence)

16/02 . . . electrically programmable { (programmable multibit digital storage elements G11C 11/5621) }
16/04 . . . [comprising cells containing floating gate transistors (G11C 16/0483, G11C 16/0491 take precedence)]
16/0416 . . . [comprising cells containing a single floating gate transistor and no select transistor, e.g. UV EPROM]
16/0425 . . . [comprising cells containing a merged floating gate and select transistor]
16/0433 . . . [comprising cells containing a single floating gate transistor and one or more separate select transistors]
16/0441 . . . [comprising cells containing multiple floating gate devices, e.g. separate read-and-write FAMOS transistors with connected floating gates]
16/045 [Floating memory cells with both P and N channel memory transistors, usually sharing a common floating gate]
16/0458 [comprising plural independent floating gates which store independent data (for storage of more than two stable states at a single floating gate G11C 11/5621)]
16/0466 [comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS] (G11C 16/0483, G11C 16/0491 take precedence)]
16/0475 [comprising plural independent storage sites which store independent data (for storage of more than two stable states at a single storage site G11C 11/5621)]
16/0483 [comprising cells having several storage transistors connected in series]
16/0491 [Virtual ground arrays]
16/06 . . . Auxiliary circuits, e.g. for writing into memory (in general G11C 7/00)
16/08 . . . Address circuits; Decoders; Word-line control circuits
16/10 . . . Programming or data input circuits
16/102 . . . [External programming circuits, e.g. EPROM programmers; In-circuit programming or reprogramming; EPROM emulators]

16/105 [Circuits or methods for updating contents of nonvolatile memory, especially with 'security' features to ensure reliable replacement, i.e. preventing that old data is lost before new data is reliably written]
16/107 [Programming all cells in an array, sector or block to the same state prior to flash erasing]
16/12 . . . Programming voltage switching circuits
16/14 . . . Circuits for erasing electrically, e.g. erase voltage switching circuits
16/16 for erasing blocks, e.g. arrays, words, groups
16/18 . . . Circuits for erasing optically
16/20 [Initialising; Data preset; Chip identification]
16/22 . . . Safety or protection circuits preventing unauthorised or accidental access to memory cells
16/225 [Preventing erasure, programming or reading when power supply voltages are outside the required ranges]
16/24 . . . Bit-line control circuits
16/26 . . . Sensing or reading circuits; Data output circuits
16/28 . . . using differential sensing or reference cells, e.g. dummy cells
16/30 . . . Power supply circuits
16/32 . . . Timing circuits
16/34 . . . Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
16/3404 [Convergence or correction of memory cell threshold voltages; Repair or recovery of overerased or overprogrammed cells]
16/3409 [Circuits or methods to recover overerased nonvolatile memory cells detected during erase verification, usually by means of a "soft" programming step]
16/3413 [Circuits or methods to recover overprogrammed nonvolatile memory cells detected during program verification, usually by means of a "soft" erasing step]
16/3418 [Disturbance prevention or evaluation; Refreshing of disturbed memory data]
16/3422 [Circuits or methods to evaluate read or write disturbance in nonvolatile memory, without steps to mitigate the problem]
16/3427 [Circuits or methods to prevent or reduce disturbance of the state of a memory cell when neighbouring cells are read or written]
16/3431 [Circuits or methods to detect disturbed nonvolatile memory cells, e.g. which still read as programmed but with threshold less than the program verify threshold or read as erased but with threshold greater than the erase verify threshold, and to reverse the disturbance via a refreshing programming or erasing step]
16/3436 [Arrangements for verifying correct programming or erasure]
16/344 [Arrangements for verifying correct erasure or for detecting overerased cells]
16/3445 [Circuits or methods to verify correct erasure of nonvolatile memory cells]
17/00 Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards ({multibit read-only memories G11C 17/14/562: } erasable programmable read-only memories G11C 16/00; coding, decoding or code conversion, in general H03M 10/03M 1: combination of ROM and RAM G11C 11/005, G11C 14/00: for electrical control of combustion engines F02D 41/2406))

17/005 {with a storage element common to a large number of data, e.g. perforated card (G11C 17/02, G11C 17/04 take precedence)}

17/02 . . . using magnetic or inductive elements (G11C 17/14 takes precedence)

17/04 . . . using capacitive elements (G11C 17/06, G11C 17/14 take precedence)

17/06 . . . using diode elements (G11C 17/14 takes precedence)

17/08 . . . using semiconductor devices, e.g. bipolar elements (G11C 17/06, G11C 17/14 take precedence)

17/10 . . . in which contents are determined during manufacturing by a predetermined arrangement of coupling elements, e.g. mask-programmable ROM

17/12 . . . using field-effect devices

17/13 {comprising cells having several storage transistors connected in series}

17/16 . . . using electrically-fusable links

17/165 {Memory cells which are electrically programmed to cause a change in resistance, e.g. to permit multiple resistance steps to be programmed rather than conduct to or from non-conduct change of fuses and antifuses (digital stores using resistance random access memory elements G11C 13/0002)}

17/18 . . . Auxiliary circuits, e.g. for writing into memory (in general G11C 7/00)

19/00 Digital stores in which the information is moved stepwise, e.g. shift register (counting chains H03K 23/00) {stack stores, push-down stores (linear pulse counters H03K 23/54, pulse distributors H03K 5/15, methods and arrangements for shifting data G06F 5/01)}

19/005 {with ferro-electric elements (condensers)}

19/02 . . . using magnetic elements (G11C 19/14 takes precedence)

19/04 . . . using cores with one aperture or magnetic loop

19/06 . . . using structures with a number of apertures or magnetic loops, e.g. transfluxors (laddic)

19/08 . . . using thin films in plane structure (thin magnetic films and apparatus or processes specially adapted for manufacturing or assembling the same H01F 10/00, H01F 41/14)

19/0808 {using magnetic domain propagation}

19/0816 {using a rotating or alternating coplanar magnetic field}

19/0825 {using a variable perpendicular magnetic field}

19/0833 {using magnetic domain interaction}

19/0841 {using electric current}

19/085 {Generating magnetic fields therefor, e.g. uniform magnetic field for magnetic domain stabilisation (coil construction H01F 5/00; electromagnets H01F 7/00)}

19/0858 {Generating, replicating or annihilating magnetic domains (also comprising different types of magnetic domains, e.g. “Hard Bubbles”) (G11C 19/0866 takes precedence)}

19/0866 {Detecting magnetic domains (measuring or detecting magnetic fields in general G01R 33/02)}}
21/026 . . . {using magnetostriction transducers, e.g. nickel delay line}

23/00 Digital stores characterised by movement of mechanical parts to effect storage, e.g. using balls; Storage elements therefor (storing by actuating contacts G11C 11/50)

25/00 Digital stores characterised by the use of flowing media; Storage elements therefor (multiple fluid-circuit element arrangements for performing digital operations F15C 1/12)

27/00 Electric analogue stores, e.g. for storing instantaneous values (integrating circuits acting as stores G06G 7/18; pulse counters with step by step integration and static storage H03K 25/00)

27/005 . . [with non-volatile charge storage, e.g. on floating gate or MNOS]

27/02 . . Sample-and-hold arrangements (G11C 27/04 takes precedence; sampling electrical signals, in general H03K)

27/022 . . . {using a magnetic memory element}

27/024 . . . {using a capacitive memory element (G11C 27/04 takes precedence)

27/026 . . . {associated with an amplifier (G11C 27/028 takes precedence)}

27/028 . . . {Current mode circuits, e.g. switched current memories}

27/04 . . Shift registers (charged coupled devices per se H01L 29/76)

29/00 Checking stores for correct operation {; Subsequent repair}; Testing stores during standby or offline operation {testing of electronic circuits in general G01R 31/28; error detection or error correction in computer memories during normal operation G06F 11/1008, G06F 11/1666; testing of computers during standby G06F 11/223}

29/003 . . . [in serial memories]

29/006 . . . [at wafer scale level, i.e. WSI (for test and configuration during manufacture H01L 22/00)]

29/02 . . Detection or location of defective auxiliary circuits, e.g. defective refresh counters

29/021 . . . [in voltage or current generators]

29/022 . . . [in I/O circuitry]

29/023 . . . [in clock generator or timing circuitry]

29/024 . . . [in decoders]

29/025 . . . [in signal lines]

29/026 . . . [in sense amplifiers]

29/027 . . . [in fuses]

29/028 . . . [with adaption or trimming of parameters]

29/04 . . Detection or location of defective memory elements {, e.g. cell constructo details, timing of test signals}

2029/0401 . . . [in embedded memories]

2029/0403 . . . [during or with feedback to manufacture]

2029/0405 . . . [comprising complete test loop]

2029/0407 . . . [on power on]

2029/0409 . . . [Online test]

2029/0411 . . . [Online error correction]

29/06 . . Acceleration testing

29/08 . . Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing

19/0875 . . . {Organisation of a plurality of magnetic shift registers (FIFO G06F 5/06; LIFO G06F 7/78)}

19/0883 [Means for switching magnetic domains from one path to another path, i.e. transfer switches, swap gates, decoders (logic circuits using magnetic domains H03K 19/168)]

19/0891 {using hybrid structure, e.g. ion doped layers}

19/10 . . . using thin films on rods; with twistors

19/12 . . using non-linear reactive devices in resonant circuits, e.g. parametrons; magnetic amplifiers with overcritical feedback}

19/14 . . using magnetic elements in combination with active elements, e.g. discharge tubes, semiconductor elements [{contains no documents, see provisionally G11C 19/02 - G11C 19/10}]

19/18 . . using capacitors as main elements of the stages {if capacitors are used as auxiliary stage in between main stages with other elements, the latter take precedence; G11C 19/005 takes precedence)}

19/182 . . . {in combination with semiconductor elements, e.g. bipolar transistors, diodes}

19/184 [with field-effect transistors, e.g. MOS-FET]

19/186 {using only one transistor per capacitor, e.g. bucket brigade shift register}

19/188 {Organisation of a multiplicity of shift registers, e.g. regeniration, timing, input-output circuits (FIFO G06F 5/06; LIFO G06F 7/78)}

19/20 . . using discharge tubes (G11C 19/14 takes precedence)

19/202 . . . {with vacuum tubes (G11C 19/207 takes precedence)}

19/205 {with gas-filled tubes (G11C 19/207 takes precedence)}

19/207 {with counting tubes}

19/28 . . using semiconductor elements (G11C 19/14 takes precedence)

19/282 . . . {with charge storage in a depletion layer, i.e. charge coupled devices [CCD]}

19/285 {Peripheral circuits, e.g. for writing into the first stage; for reading-out of the last stage}

19/287 {Organisation of a multiplicity of shift registers (FIFO G06F 5/06; LIFO G06F 7/78)}

19/30 . . using opto-electronic devices, i.e. light emitting and photoelectric devices electrically or optically coupled

19/32 . . using superconductive elements

19/34 . . using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency (in RAM multistable cells G11C 11/56; in capacitive analog stores G11C 27/04)
Marginal testing, e.g. race, voltage or current of retention of timing of impedance of threshold voltage equipment G11C 29/56
e.g. using direct memory access [DMA] or for testing by means external to the store,
Arrangements in static stores specially adapted
(self testing [BIST] { or interconnection details })
Built-in arrangements for testing, e.g. built-in patterns
Test algorithms, e.g. memory scan [MScan]
Test trigger logic chip identification, repair information
Indication or identification of errors, e.g. for
Response verification devices
Data generation devices, e.g. data inverters
Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
[Address decoder] {Manipulation of word size}
{Address conversion or mapping, i.e. logical to physical address}
using counters or linear-feedback shift registers [LFSR]
Accessing serial memories
Accessing extra cells, e.g. dummy cells or redundant cells
Accessing multiple arrays (G11C 29/24 takes precedence)
{Concurrent test}
Dependent multiple arrays, e.g. multi-bit arrays
Accessing single arrays
Serial access; Scan testing
{Scan chain}
Accessing multiple bits simultaneously
Data generation devices, e.g. data inverters
{Pattern generator}
Response verification devices
using compression techniques
{Comparison of products, i.e. test results of chips or with golden chip}
using error correcting codes [ECC] or parity check
Indication or identification of errors, e.g. for repair
{for self repair}
{Internal storage of test result, quality data, chip identification, repair information}
Test trigger logic
Arrangements in static stores specially adapted for testing by means external to the store, e.g. using direct memory access [DMA] or using auxiliary access paths (external testing equipment G11C 29/56)
Marginal testing, e.g. race, voltage or current testing
{of threshold voltage}
{of impedance}
{of timing}
{of retention}

Subject matter not provided for in other groups of this subclass

Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store

Isolation gates, i.e. gates coupling bit lines to the sense amplifier

Transfer gates, i.e. gates coupling the sense amplifier output to data lines, I/O lines or global bit lines

Register arrays

Sense amplifier related aspects

Sense amplifier enabled by a address transition detection related control signal

Current sense amplifiers

Sense amplifier drivers

Frequency reading type sense amplifier

Integrator type sense amplifier

Aspects relating to interfaces of memory device to external buses

Analog or multilevel bus

Compression or decompression of data before storage

Embedded memory devices, e.g. memories with a processing device on the same die or ASIC memory designs

Aspects related to pads, pins or terminals

Serial-parallel conversion of data or prefetch

Wide data ports

Equalization of bit lines

Solid state audio (deprecated, only for historical reasons, G06F 3/16, G11B)

Control and timing of internal memory operations

Concurrent read and write (for multi-port memory G11C 7/1075)

Late write

Standby or low power modes

Copy

Memory devices with an internal cache buffer

Calibration

Write conditionally, e.g. only if new data and old data differ

Latency related aspects

Timing of a read operation (sense amplifier timing G11C 7/08, G11C 7/08)

Timing of a write operation (sense amplifier timing G11C 7/08, G11C 7/08)

Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor

Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells

Memory devices with multiple cells per bit, e.g. twin-cells

Memory devices with silicon-on-insulator cells

Refreshing of dynamic cells

Calibration or ate or cycle tuning

Parity or ECC in refresh operations

Interleaved refresh operations

Low level details of refresh operations

Pseudo-SRAMs

Refresh in standby or low power modes

Voltage or leakage in refresh operations

Indexing scheme relating to G11C 11/56 and subgroups for features not covered by these groups

Multilevel memory cell aspects

Multilevel memory cell with more than one control gate

Multilevel memory cell with more than one floating gate

Multilevel memory cell with additional gates, not being floating or control gates

Multilevel memory cell comprising negative resistance, quantum tunneling or resonance tunneling elements

Multilevel magnetic memory cell using non-magnetic non-conducting interlayer, e.g. MTJ

Multilevel magnetic memory cell using non-magnetic conducting interlayer, e.g. GMR, SV, PSV

Multilevel ROM cell programmed by source, drain or gate contacting

Multilevel memory programming aspects

Multilevel programming verification

Multilevel programming of more than one cell

Multilevel programming and reading

Multilevel programming and programming verification

Self-converging multilevel programming

Multilevel memory reading aspects

Multilevel memory reading of more than one cell

Multilevel reading using successive approximation

Mixed concurrent serial multilevel reading

Reference cells

Miscellaneous aspects

Multilevel memory having cells with different number of storage levels

Multilevel memory with buffers, latches, registers at input or output

Multilevel memory comprising cache storage devices

Multilevel memory comprising counting devices

Multilevel memory with current-mirror arrangements

Multilevel memory with flag bits, e.g. for showing that a "first page" of a word line is programmed but not a "second page"

Multilevel memory with bit inversion arrangement

Multilevel memory programming, reading or erasing operations wherein the order or sequence of the operations is relevant
Resistive cell structure aspects

Resistive cell, memory material aspects

Resistive cells; Technology aspects

Dissociation, i.e. using memory material including molecules which, during a write operation, are dissociated in ions which migrate further in the memory material

Use of different molecule structures as storage states, e.g. part of molecule being rotated

Current-voltage curve

Memory cell being a nanotube, e.g. suspended nanotube

Memory cell being a nanowire transistor

Memory cell being a nanowire having RADIAL composition

Memory cell comprising at least a nanowire and only two terminals

Resistive cell, memory material aspects

Material having complex metal oxide, e.g. perovskite structure

Material having simple binary metal oxide structure

Material including silicon

Material includes an oxide or a nitride

Material including carbon, e.g. graphite, graphene

Resistive cell structure aspects

Structure including a barrier layer preventing or limiting migration, diffusion of ions or charges or formation of electrolytes near an electrode

Structure characterized by the electrode material, shape, etc.

Structure wherein the resistive material being in a transistor, e.g. gate

Structure including a tunneling barrier layer, the memory effect implying the modification of tunnel barrier conductivity

Structure including two electrodes, a memory active layer and at least two other layers which can be a passive or source or reservoir layer or a less doped memory active layer

Structure including two electrodes, a memory active layer and a so called passive or source or reservoir layer which is NOT an electrode, wherein the passive or source or reservoir layer is a source of ions which migrate afterwards in the memory active layer to be only trapped there, to form conductive filaments there or to react with the material of the memory active layer in redox way

Resistive array aspects

Three dimensional array

Array wherein the access device being a diode

Array where access device function, e.g. diode function, being merged with memorizing function of memory element

Array wherein each memory cell has more than one access device

Array having a NAND structure comprising, for example, memory cells in series or memory elements in series, a memory element being a memory cell in parallel with an access transistor

Array using an access device for each cell which being not a transistor and not a diode

Array wherein the memory element being directly connected to the bit lines and word lines without any access device being used

Array wherein the memory cells of a group share an access device, all the memory cells of the group having a common electrode and the access device being not part of a word line or a bit line driver

Array wherein the access device being a transistor

Array wherein the substrate, the cell, the conductors and the access device are all made up of organic materials

Array wherein the array conductors, e.g. word lines, bit lines, are made of nanowires

Array having, for accessing a cell, a word line, a bit line and a plate or source line receiving different potentials

Structural aspects of erasable programmable read-only memories

Nonvolatile memory cell provided with a separate control gate for erasing the cells, i.e. erase gate, independent of the normal read control gate

Floating gate cells in which the floating gate consists of multiple isolated silicon islands, e.g. nanocrystals

Nonvolatile memory wherein data storage is accomplished by storing relatively few electrons in the storage layer, i.e. single electron memory

Floating gate memory cells with a single polysilicon layer

Reading and writing aspects of erasable programmable read-only memories

Circuits or methods to write a page or sector of information simultaneously into a nonvolatile memory, typically a complete row or word line in flash memory

Flash programming of all the cells in an array, sector or block simultaneously

Flash erasure of all the cells in an array, sector or block simultaneously

Suspension of programming or erasing cells in an array in order to read other cells in it

Nonvolatile memory in which reading can be carried out from one memory bank or array whilst a word or sector in another bank or array is being erased or programmed simultaneously
Nonvolatile memory in which programming can be carried out in one memory bank or array whilst a word or sector in another bank or array is being erased simultaneously.

Floating gate memory which is adapted to be one-time programmable (OTP), e.g. containing multiple OTP blocks permitting limited update ability.

Floating gate memory programmed by reverse programming, e.g. programmed with negative gate voltage and erased with positive gate voltage or programmed with high source or drain voltage and erased with high gate voltage.

Reduction of number of input/output pins by using a serial interface to transmit or receive addresses or data, i.e. serial access memory.

Indexing scheme relating to checking stores for correct operation, subsequent repair or testing stores during standby or offline operation.

Location of redundancy information.

Redundancy information stored in a part of the memory core to be repaired.

Redundancy information loaded from the outside into the memory.

Time at which the repair is done.

After packaging.

Before packaging.

Storage technology used for the repair.

E-fuses, e.g. electric fuses or antifuses, floating gate transistors.

Laser fuses.