CPC COOPERATIVE PATENT CLASSIFICATION

G PHYSICS
 (NOTES omitted)

INSTRUMENTS

G09 EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS

G09G ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION (lighting in general F21; arrangements for displaying electric variables or waveforms G01R 3/00; devices or arrangements for the control of light beams G02F 1/00; indicating of time by visual means G04B 19/00, G04C 17/00, G04G 9/00; arrangements for transferring data between computers and peripheral equipment G06F 3/00; visible signalling arrangements or devices G08B 5/00; traffic control systems G08G; display, advertising, signs G09F, e.g. static indicating arrangements comprising an association of a number of separate sources or light control cells G09F 9/00; static indicating arrangements comprising integral associations of a number of light sources H01J, H01K, H01L, H05B 33/12; circuits in pulse counters for indicating the result H03K 21/18; coding, decoding or code conversion, in general H03M; reproducing a picture or pattern using electric signals representing parts thereof and produced by scanning an original H04N)

NOTES
1. This subclass covers indicator consoles, i.e. arrangements or circuits for processing control signals to achieve the display, e.g. for the calling up, reception, storage, regeneration, coding, decoding, addressing of control signals.
2. This subclass does not cover the structural details of the indicating devices, such as panels or tubes per se, or assemblies of individual light sources, which are covered by the relevant subclasses, e.g. H01J, H01K, H01L, G02F, G09F, H05B.
3. Contrary to subclass H04N, in which are classified display devices capable of representing continuous brightness value scales, this subclass is limited to devices using only a discrete number of brightness values, e.g. visible/non-visible.
4. The visual effect may be produced by a luminescent screen scanned by an electron beam, directly by controlled light sources, by projection of light, from controlled light sources onto characters, symbols, or elements thereof drawn on a support, or by electric, magnetic, or acoustic control of the parameters of light rays from an independent source.

WARNING
In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme.

1/00 Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators;
 (General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data) (cathode-ray oscilloscopes G01R 13/20; (radar display arrangements G01S 7/04; display of digital non-picture data in television systems H04N 7/0255))
 1/002 . (Intensity circuits (G09G 1/06 - G09G 1/28 take precedence))
 1/005 . (Power supply circuits)
 1/007 . (Circuits for displaying split screens)
 1/02 . (Deflection circuits (G09G 1/06 - G09G 1/28 take precedence))
 1/04 . (Deflection circuits (Constructional details not otherwise provided for (electron-optical arrangements H01J 29/46, H01J 37/04, H01J 37/3021))

1/06 . using single beam tubes (G09G 1/26, G09G 1/28 take precedence), (e.g. three-dimensional or perspective representation, rotation or translation of display pattern, hidden lines, shadows (G09G 1/28 takes precedence; stereoscopic TV-systems, details thereof H04N 13/00; oscilloscopes for three-dimensional representation G01R 13/206; vectorscopes G01R 13/208))
 1/07 . with combined raster scan and calligraphic display
 1/08 . the beam directly tracing characters, the information to be displayed controlling the deflection (and the intensity) as a function of time in two spatial co-ordinates, e.g. according to a cartesian co-ordinate system
 1/10 . the deflection signals being produced by essentially digital means, e.g. incrementally
 1/12 . the deflection signals being produced by essentially analogue means
1/14 . . the beam tracing a pattern independent of the information to be displayed, this latter determining the parts of the pattern rendered respectively visible and invisible

1/143 . . . [Circuits for displaying horizontal and vertical lines]

1/146 . . . [Flicker reduction circuits]

1/16 . . . the pattern of rectangular co-ordinates extending over the whole area of the screen, i.e. television type raster

1/162 [for displaying digital inputs as analog magnitudes, e.g. curves, bar graphs, coordinate axes, singly or in combination with alpha-numeric characters (cathode-ray oscilloscopes for displaying analog inputs, singly or in combination with alpha-numeric characters G01R 13/20; television receiver circuitry for displaying supplementary, e.g. alpha-numeric, information H04N 5/445)]

1/165 [Details of a display terminal using a CRT, the details relating to the control arrangement of the display terminal and to the interfaces thereto (details suitable for both CRT and flat panel G09G 5/003; specific for a flat panel G09G 3/2092)]

1/167 (Details of the interface to the display terminal specific for a CRT (details suitable for both CRT and flat panel G09G 5/006; specific for a flat panel G09G 3/2096))

1/18 . . . a small local pattern covering only a single character, and stepping to a position for the following character, e.g. in rectangular or polar co-ordinates, or in the form of a framed star

1/20 . . using multi-beam tubes (G09G 1/26, G09G 1/28 take precedence)

1/22 . . using tubes permitting selection of a complete character from a number of characters (tubes therefor H01J 31/16)

1/24 . . using tubes permitting selection of individual elements forming in combination a character (see provisionally also G09G 1/22)

1/26 . . using storage tubes (tubes therefor H01J 31/58)

1/28 . . using colour tubes (tubes therefor H01J 31/20)

1/285 . . . [Interfacing with colour displays, e.g. TV receiver]

3/00 Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes (optical scanning systems in general G02B 26/10)

3/001 . . [using specific devices not provided for in groups G09G 3/02 - G09G 3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background (slide projectors per se G03B 23/00 = 42 HP)]

3/002 . . . [to project the image of a two-dimensional display, such as an array of light emitting or modulating elements or a CRT]

3/003 . . . [to produce spatial visual effects]

3/004 . . [to give the appearance of moving signs]

3/005 . . . [forming an image using a quickly moving array of imaging elements, causing the human eye to perceive an image which has a larger resolution than the array, e.g. an image on a cylinder formed by a rotating line of LEDs parallel to the axis of rotation]

3/006 . . [Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays (testing individual LED's G01R 31/2635; testing lamps G01R 31/44; testing of optical features of LCD displays G02F 1/1309)]

3/007 . . [Use of pixel shift techniques, e.g. by mechanical shift of the physical pixels or by optical shift of the perceived pixels]

3/008 . . [forming an image on an image carrier by relative movement of a writing unit to the image carrier, e.g. on a photoconductive rotating belt, or on an electronic blackboard]

3/009 . . . by tracing or scanning a light beam on a screen

3/025 [with scanning or deflecting the beams in two directions or dimensions]

3/04 for presentation of a single character by selection from a plurality of characters, or by combining the character by combination of individual elements, e.g. segments (using a combination of such display devices for composing words, rows or the like, in a frame with fixed character positions)

3/045 [Selecting complete characters]

3/06 using controlled light sources

3/08 using incandescent filaments

3/10 . . . using gas tubes

3/12 . . . using electroluminescent elements (using cathode-ray tubes with phosphor screens G09G 1/00)

3/14 Semiconductor devices, e.g. diodes

3/16 by control of light from an independent source

3/18 using liquid crystals

3/19 using electrochromic devices

3/20 for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix (no fixed position being assigned to or needed to be assigned to the individual characters or partial characters)

3/203 [Display of colours (specific for liquid crystal displays G09G 3/3607)]

3/207 [Display of intermediate tones]

3/211 [by amplitude modulation]

3/214 [by modulation of the duration of a single pulse during which the logic level remains constant]

3/218 [by time modulation using two or more time intervals]

3/222 [using sub-frames]

3/225 [the sub-frames having all the same time duration]

3/229 [the sub-frames having non-binary weights]

3/233 [with splitting one or more sub-frames corresponding to the most significant bits into two or more sub-frames]

3/237 [with specific control of sub-frames corresponding to the least significant bits]

3/24 [the sub-frames being organized in consecutive sub-frame groups]

3/244 [using dithering]
using controlled light sources

\text{details relating to the control arrangement; specific for a CRT} (G09G 1/165)

\{ Details of a display terminals using a flat panel,
\text{specific for a flat panel (suitable for both CRT and flat panel)}

\{ Details of the interface to the display terminal; specific for a CRT \}

\{ Details of the matrix \}

\{ with use of a plurality of processors, each processor controlling a number of individual elements of the matrix \}

\{ Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto (suitable for both CRT and flat panel G09G 5/003; specific for a CRT G09G 1/165) \}

\{ Details of the interface to the display terminal specific for a flat panel (suitable for both CRT and flat panel G09G 5/006; specific for a CRT G09G 1/167) \}

\{ with use of electroluminescent panels \}

\{ using electroluminescent panels \}

\{ using opposed discharge type panels \}

\{ using non-standard pixel electrode arrangements \}

\{ with more than 3 electrodes involved in the operation \}

\{ using alternate lighting of surface-type panels \}

\{ using electro luminescent panels \}

\{ semiconductor, e.g. using light-emitting diodes [OLED] \}

\{ using organic light-emitting diodes [OLED] \}

\{ using a passive matrix \}

\{ using an active matrix \}

\{ with pixel circuitry controlling the current through the light-emitting element \}

\{ the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror \}

\{ the data current flowing through the driving transistor during a setting phase, e.g. by using a switch for connecting the driving transistor to the data driver \}

\{ with pixel circuitry controlling the voltage across the light-emitting element \}

\{ Details of drivers for scan electrodes \}

\{ Details of drivers for data electrodes \}

\{ in which the data driver supplies a variable data current for setting the current through, or the voltage across, the light-emitting elements \}

\{ in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements \}

\{ by control of light from an independent source \}
piezoelectric effect}

{ using light modulating elements actuated by a magnetic field }

{ using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices (using liquid crystal devices G09G 3/36; using electrochromic devices G09G 3/338) }

{ based on particles moving in a fluid or in a gas, e.g. electrophoretic devices (electrophoretic devices per se G02F 1/167) }

{ with more than two electrodes controlling the modulating element }

{ based on rotating particles or microelements }

{ based on modulation of the reflection angle, e.g. micromirrors (micromirrors devices per se G02B 260/0833) }

{ based on interferometric effect }

{ based on light coupled out of a light guide, e.g. due to scattering, by contracting the light guide with external means }

{ based on the deformation of a fluid drop, e.g. electrowetting }

{ using light modulating elements actuated by a magnetic field }

{ using light modulating elements actuated by a piezoelectric effect }

{ using liquid crystals }

{ with thermally addressed liquid crystals }

{ for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels (display of colours in flat matrix panels other than liquid crystal displays G09G 3/2003; grey scales specific for television H04N 3/127) }

{ Control of matrices with row and column drivers }

{ Control of polarity reversal in general }

{ with automatic refresh of the display panel using sense/write circuits }

{ using a passive matrix (G09G 3/3674 - G09G 3/3696 take precedence) }

{ using active addressing }

{ using liquid crystals having memory effects, e.g. ferroelectric liquid crystals }

{ with transmission/voltage characteristic comprising multiple loops, e.g. antiferroelectric liquid crystals }

{ with intermediate tones displayed by domain size control (domain size control in flat matrix panels other than liquid crystal displays having memory effects G09G 3/207) }

{ with use of subpixels }

Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators (image data processing or generation, in general G06T)

{ Arbitration of resources in a display system, e.g. control of access to frame buffer by video controller and/or main processor }

{ Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto (specific for a CRT G09G 1/165; for a flat panel G09G 3/2092) }

{ Adapting incoming signals to the display format of the display terminal }

{ Details of the interface to the display terminal (specific for a display terminal using a CRT G09G 1/167; using a flat panel G09G 3/2096; circuits for interfacing with colour displays G09G 5/04) }

{ Clock recovery }

{ characterised by the way in which colour is displayed (details of colour display specific for CRTs G09G 1/28; specific for flat matrix panels other than liquid crystal displays G09G 3/2003; specific for liquid crystal displays G09G 3/3607) }

{ using memory planes }

{ using colour registers, e.g. to control background, foreground, surface filling (G09G 5/06 takes precedence) }

{ Control of mixing and/or overlay of colours in general (G09G 5/022 and G09G 5/024 take precedence) }

{ Circuits for converting colour display signals into monochrome display signals }

{ using circuits for interfacing with colour displays }
generating right-hand to left-hand language

- Displaying multiple viewpoints
- Displaying of right-to-left language
- Timing circuits for raser scan displays (specially adapted for television H04N ;; synchronisation between the display unit and other units, e.g. other display units, video-disc players)

- Function-generator circuits, e.g. circle generators
- Characterised by the display of characters or indicia using display control signals derived from coded signals representing the characters or indicia, e.g. with a character-code memory

- Resolution modifying circuits, e.g. variable screen formats, resolution change between memory contents and display screen

- Generation of individual character patterns
- [Circuits for displaying proportional spaced characters or for kerning]
- [of ideographic or arabic-like characters]
- For modifying the character dimensions, e.g. double width, double height
- For enhancement of character form, e.g. smoothing

- Control of display attribute with means for controlling the display position

- For rolling or scrolling
- [for systems having a character code-mapped display memory]
- [for systems having a bit-mapped display memory]

- Characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
- [Graphics controllers]
- [with conversion of CRT control signals to flat panel control signals, e.g. adapting the palette memory]

- Details of the operation on graphic patterns

- For modifying the size of the graphic pattern
- For mixing or overlaying two or more graphic patterns

- With means for controlling the display position
- Control of the bit-mapped memory

- Resolution modifying circuits, e.g. variable screen formats

- Arrangements for updating the contents of the bit-mapped memory

- Arrangements specially adapted for transferring the contents of the bit-mapped memory to the screen

5/397 . . . Arrangements specially adapted for transferring the contents of two or more bit-mapped memories to the screen simultaneously, e.g. for mixing or overlay (G09G 5/02 takes precedence)

WARNING
Not complete. See also G09G 5/395, G09G 5/399

5/399 . . . using two or more bit-mapped memories, the operations of which are switched in time, e.g. ping-pong buffers

5/40 . characterised by the way in which both a pattern determined by character code and another pattern are displayed simultaneously, or either pattern is displayed selectively, e.g. with character code memory and APA, i.e. all-points-addressable, memory

5/42 . characterised by the display of patterns using a display memory without fixed position correspondence between the display memory contents and the display position on the screen

2230/00 Details of flat display driving waveforms

2290/00 Indexing scheme relating to details of a display terminal

2300/00 Aspects of the constitution of display devices

2300/00 . Composition of display devices
2300/023 . Display panel composed of stacked panels
2300/026 . Video wall, i.e. juxtaposition of a plurality of screens to create a display screen of bigger dimensions

2300/04 . Structural and physical details of display devices
2300/0404 . Matrix technologies
2300/0408 . Integration of the drivers onto the display substrate
2300/0413 . Details of dummy pixels or dummy lines in flat panels
2300/0417 . Special arrangements specific to the use of low carrier mobility technology
2300/0421 . Structural details of the set of electrodes
2300/0426 . Layout of electrodes and connections
2300/043 . Compensation electrodes or other additional electrodes in matrix displays related to distortions or compensation signals, e.g. for modifying TFT threshold voltage in column driver

2300/0434 . Flat panel display in which a field is applied parallel to the display plane
2300/0439 . Pixel structures
2300/0443 . with several sub-pixels for the same colour in a pixel, not specifically used to display gradations (G09G 3/364 takes precedence)

2300/0447 . . . for multi-domain technique to improve the viewing angle in a liquid crystal display, such as multi-vertical alignment [MVA]

2300/0452 . Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components

2300/0456 . . . with a reflective area and a transmissive area combined in one pixel, such as in transflectance pixels
or modulating elements, inclusive of non-linear two terminal elements, other than LCD or OLED emitting or modulating elements, e.g. with use of active elements, inclusive of non-linear two terminal elements, other than LCD or OLED emitting or modulating elements, other than LCD or OLED emitting or modulating elements.

Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, other than LCD or OLED emitting or modulating elements, other than LCD or OLED emitting or modulating elements.

Use of memory effects in nematic liquid crystals, related to liquid crystal pixels.

Chiral liquid crystals, including chiral-nematic liquid crystals, with transitions between focal conic, planar, and homeotropic states.

Use of a bi-refringent liquid crystal, optically controlled bi-refringence [OCB] with bend and splay states, or electrically controlled bi-refringence [ECB] for controlling the color.

Use of transitions between isotropic and anisotropic phases in liquid crystals, by voltage controlled deformation of the liquid crystal molecules, as opposed to merely changing the orientation of the molecules as in, e.g. twisted-nematic [TN], vertical-aligned [VA], cholesteric, in-plane, or bi-refringent liquid crystals.

Passive matrix structure, i.e. with direct application of both column and row voltages to the light emitting or modulating elements, other than LCD or OLED.

Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements.

Sub-multiplexed active matrix panel, i.e. wherein one active driving circuit is used at pixel level for multiple image producing elements.

Several active elements per pixel in active matrix panels.

used for selection purposes, e.g. logical AND for partial update.

used for counteracting undesired variations, e.g. feedback or autozeroing.

used to establish symmetry in driving, e.g. with polarity inversion.

forming a digital to analog [D/A] conversion circuit.

forming a linear amplifier or follower.

with level shifting.

forming a memory circuit, e.g. a dynamic memory with one capacitor.

being a dynamic memory without any storage capacitor, i.e. with use of parasitic capacitances as storage elements.

being a dynamic memory with more than one capacitor.

Static memory circuit, e.g. flip-flop.

with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes.

by means of changes in the pixel supply voltage.

with level shifting.

Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes.

using a non-linear two-terminal element.

Pixel comprising a non-linear two-terminal element alone in series with each display pixel element.

Pixel comprising a non-linear two-terminal element in series with each display pixel element, the series comprising also other elements.

having more than one selection line for a two-terminal active matrix LCD, e.g. Lechner and D2R circuits.

Command of the display device.

Addressing, scanning or driving the display screen or processing steps related thereto.

Addressing of scan or signal lines.

Simultaneous scanning of several lines in flat panels.

using active addressing.

Double addressing, i.e. scanning two or more lines, e.g. lines 2 and 3; 4 and 5, at a time in a first field, followed by scanning two or more lines in another combination, e.g. lines 1 and 2; 3 and 4, in a second field.

controlling the sequence of the scanning lines with respect to the patterns to be displayed, e.g. to save power.

Interleaved control phases for different scan lines in the same sub-field, e.g. initialization, addressing and sustaining in plasma displays that are not simultaneous for all scan lines.

with collection of electrodes in groups for n-dimensional addressing.

with use of split matrices (G09G 3/3644 and G09G 3/3666 take precedence).

Details of interfacing.

related to multiple interlacing, i.e. involving more fields than just one odd field and one even field.

De-interlacing.

Special driving of display border areas.

Field-sequential colour display.

Switching ON and OFF the backlight within one frame.

Scrolling of light from the illumination source over the display in combination with the scanning of the display screen.

Details of the generation of driving signals.

Clearing or presetting the whole screen independently of waveforms, e.g. on power-on (G09G 2310/063 takes precedence).

Precharge or discharge of column electrodes before or after applying exact column voltages.

Precharge or discharge of pixel before applying new pixel voltage.

Control of polarity reversal in general, other than for liquid crystal displays.
Details of timing specific for flat panels, other than drivers for liquid crystal, plasma or OLED displays

Application of pulses of alternating polarity prior to the drive pulse in electrophoretic displays

Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters

Special arrangements with multiplexing or demultiplexing of display data in the drivers for data electrodes, in a pre-processing circuitry delivering display data to said drivers or in the matrix panel, e.g. multiplexing plural data signals to one D/A converter or demultiplexing the D/A converter output to multiple columns

Details of drivers for scan electrodes other than drivers for liquid crystal, plasma or OLED displays

Arrangement of scan or data electrode driver circuits at the periphery of a panel not inherent to a split matrix structure

Arrangement of drivers for different directions of scanning

Details of a shift registers arranged for use in a driving circuit

Details of voltage level shifters arranged for use in a driving circuit

Details of output amplifiers or buffers arranged for use in a driving circuit

Details of sampling or holding circuits arranged for use in a driver for data electrodes

Improving the quality of display appearance

Compensation of DC component across the pixels in flat panels

Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display

with crosstalk due to leakage current of pixel switch in active matrix panels

Reducing feedthrough effects in active matrix panels, i.e. voltage changes on the scan electrode influencing the pixel voltage due to capacitive coupling

Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes

Increasing the driving margin in plasma displays

Improving the luminance or brightness uniformity across the screen

Improving the black level

Compensation of deficiencies in the appearance of colours

Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes

Improving the response speed

Reduction of after-image effects

in the context of movement of objects on the screen or movement of the observer relative to the screen

Reduction of sub-frame artefacts

Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping

for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction

by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction

using tables for spatial correction of display data

by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel

by monitoring each display pixel

Maintaining the quality of display appearance

Temperature compensation

Preventing or counteracting the effects of ageing

Compensation of drifts in the characteristics of light emitting or modulating elements

Dealing with screen burn-in prevention or compensation of the effects thereof

using evaluation of the usage time

Adjustment of display parameters

Manual adjustment

The adjustment depending on the type of the information to be displayed

Adjustment of illumination source parameters

for control of overall brightness

by amplitude modulation of the brightness of the illumination source
2320/064 . . . by time modulation of the brightness of the illumination source
2320/0646 . . . Modulation of illumination source brightness and image signal correlated to each other
2320/0653 . . . Controlling or limiting the speed of brightness adjustment of the illumination source
2320/066 . . . for control of contrast
2320/0666 . . . for control of colour parameters, e.g. colour temperature
2320/0673 . . . for control of gamma adjustment, e.g. selecting another gamma curve
2320/068 . . . for control of viewing angle adjustment
2320/0686 . . . with two or more screen areas displaying information with different brightness or colours
2320/0693 . . . Calibration of display systems
2320/08 . . . Arrangements within a display terminal for setting, manually or automatically, display parameters of the display terminal
2320/10 . . . Special adaptations of display systems for operation with variable images
2320/103 . . . Detection of image changes, e.g. determination of an index representative of the image change
2320/106 . . . Determination of movement vectors or equivalent parameters within the image
2330/00 Aspects of power supply; Aspects of display protection and defect management
2330/02 . . . Details of power systems and of start or stop of display operation
2330/021 . . . Power management, e.g. power saving
2330/022 . . . in absence of operation, e.g. no data being entered during a predetermined time
2330/023 . . . using energy recovery or conservation
2330/024 . . . with inductors, other than in the electrode driving circuitry of plasma displays
2330/025 . . . Reduction of instantaneous peaks of current
2330/026 . . . Arrangements or methods related to booting a display
2330/027 . . . Arrangements or methods related to powering off a display
2330/028 . . . Generation of voltages supplied to electrode drivers in a matrix display other than LCD
2330/04 . . . Display protection
2330/045 . . . Protection against panel overheating
2330/06 . . . Handling electromagnetic interferences [EMI], covering emitted as well as received electromagnetic radiation
2330/08 . . . Fault-tolerant or redundant circuits, or circuits in which repair of defects is prepared
2330/10 . . . Dealing with defective pixels
2330/12 . . . Test circuits or failure detection circuits included in a display system, as permanent part thereof
2340/00 Aspects of display data processing
2340/02 . . . Handling of images in compressed format, e.g. JPEG, MPEG
2340/04 . . . Changes in size, position or resolution of an image
2340/0407 . . . Resolution change, inclusive of the use of different resolutions for different screen areas
2340/0414 . . . Vertical resolution change
2340/0421 . . . Horizontal resolution change
2340/0428 . . . Gradation resolution change
2340/0435 . . . Change or adaptation of the frame rate of the video stream
2340/0442 . . . Handling or displaying different aspect ratios, or changing the aspect ratio
2340/045 . . . Zooming at least part of an image, i.e. enlarging it or shrinking it
2340/0457 . . . Improvement of perceived resolution by subpixel rendering
2340/0464 . . . Positioning
2340/0471 . . . Vertical positioning
2340/0478 . . . Horizontal positioning
2340/0485 . . . Centering horizontally or vertically
2340/0492 . . . Change of orientation of the displayed image, e.g. upside-down, mirrored
2340/06 . . . Colour space transformation
2340/08 . . . Monochrome to colour transformation
2340/10 . . . Mixing of images, i.e. displayed pixel being the result of an operation, e.g. adding, on the corresponding input pixels
2340/12 . . . Overlay of images, i.e. displayed pixel being the result of switching between the corresponding input pixels
2340/125 . . . wherein one of the images is motion video
2340/14 . . . Solving problems related to the presentation of information to be displayed
2340/145 . . . related to small screens
2340/16 . . . Determination of a pixel data signal depending on the signal applied in the previous frame
2350/00 Solving problems of bandwidth in display systems
2352/00 Parallel handling of streams of display data
2354/00 Aspects of interface with display user
2356/00 Detection of the display position w.r.t. other display screens
2358/00 Arrangements for display data security
2360/00 Aspects of the architecture of display systems
2360/02 . . . Graphics controller able to handle multiple formats, e.g. input or output formats
2360/04 . . . Display device controller operating with a plurality of display units
2360/06 . . . Use of more than one graphics processor to process data before displaying to one or more screens
2360/08 . . . Power processing, i.e. workload management for processors involved in display operations, such as CPUs or GPUs
2360/10 . . . Display system comprising arrangements, such as a coprocessor, specific for motion video images
2360/12 . . . Frame memory handling
2360/121 . . . using a cache memory
2360/122 . . . Tilting
2360/123 . . . using interleaving
2360/125 . . . using unified memory architecture [UMA]
2360/126 . . . The frame memory having additional data ports, not inclusive of standard details of the output serial port of a VRAM
2360/127 . . . Updating a frame memory using a transfer of data from a source area to a destination area
2360/128 . . . Frame memory using a Synchronous Dynamic RAM [SDRAM]
2360/14 . . . Detecting light within display terminals, e.g. using a single or a plurality of photosensors
the light conveying information used for selecting or modulating the light emitting or modulating element

the light being detected by light detection means within each pixel

the light being ambient light

the light originating from the display screen

the originated light output being determined for each pixel

the light being detected by light detection means within each pixel

Calculation or use of calculated indices related to luminance levels in display data

Use of a frame buffer in a display terminal, inclusive of the display panel

Aspects of data communication

Networking aspects

Centralised management of display operation, e.g. in a server instead of locally

LAN communication management

Arrangements and methods specific for the display of internet documents

Exchange of auxiliary data, i.e. other than image data, between monitor and graphics controller

for monitor identification

using multiple communication channels, e.g. parallel and serial

using display data channel standard [DDC] communication

Consumer Electronics Control, i.e. control of another device by a display or vice versa

Details of image data interface between the display device controller and the data line driver circuit

Use of a protocol of communication by packets in interfaces along the display data pipeline

Use of DVI or HDMI protocol in interfaces along the display data pipeline

Use of low voltage differential signaling [LVDS] for display data communication

Use of wireless transmission of display information

Use of optical transmission of display information

Details of the management of multiple sources of image data

Detection of presence or absence of input display information or of connection or disconnection of a corresponding information source

Keyboard-Video-Mouse [KVM] switch

Specific applications

Applications of flexible displays

Electronic labels

Remotely controlled electronic signs other than labels

Biomedical applications

Automotive applications

Avionics applications

Electronic books and readers

Digital picture frames