F25J LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT (OR LIQUEFIED GASEOUS) MIXTURES BY PRESSURE AND COLD TREATMENT (OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE (cryogenic pumps F04B 37/08; gas storage vessels, gas holders F17; filing vessels with, or discharging from vessels, compressed, liquefied or solidified gases F17C; refrigeration machines, plants, or systems F25B))

WARNING

In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme.

1/00 Processes or apparatus for liquefying or solidifying gases or gaseous mixtures {recovered volatile solvents by condensation B01D 5/00; vapor recovery systems combined with filling nozzles B67D 7/54; solidification of carbonic acid C01B 32/55; for ammonia in general C01C 1/00}

1/0002 . {characterised by the fluid to be liquefied}
1/0005 . . (Light or noble gases (F25J 1/0012 takes precedence))
1/0007 . . {Helium}
1/001 . . {Hydrogen}
1/0012 . . {Primary atmospheric gases, e.g. air}
1/0015 . . {Nitrogen}
1/0017 . . {Oxygen}
1/002 . . . {Argon}
1/0022 . . . {Hydrocarbons, e.g. natural gas}
1/0025 . . . {Boil-off gases "BOG" from storages}
1/0027 . . . {Oxides of carbon, e.g. CO₂}
1/003 . . . {characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production}
1/0032 . . . {using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"}
1/0035 . . . {by gas expansion with extraction of work}
1/0037 {of a return stream}
1/004 {by flash gas recovery (F25J 1/00267 takes precedence)}
1/0042 {by liquid expansion with extraction of work}
1/0045 {by vaporising a liquid return stream}
1/0047 {using an "external" refrigerant stream in a closed vapor compression cycle (F25J 1/00221, F25J 1/00225 take precedence)}
1/005 {by expansion of a gaseous refrigerant stream with extraction of work}
1/0052 . . . {by vaporising a liquid refrigerant stream}
1/0055 . . . {originating from an incorporated cascade}

1/0057 {after expansion of the liquid refrigerant stream with extraction of work}
1/006 . . {characterised by the refrigerant fluid used (refrigerants in vapor compression cycles F25B 9/002, refrigerant materials per se C09K 5/00)}
1/0062 . . {Light or noble gases, mixtures thereof (F25J 1/007 takes precedence)}
1/0065 . . {Helium}
1/0067 . . {Hydrogen}
1/007 . . {Primary atmospheric gases, mixtures thereof}
1/0072 . . {Nitrogen}
1/0075 . . {Oxygen}
1/0077 . . {Argon}
1/008 . . {Hydrocarbons}
1/0082 . . {Methane}
1/0085 . . {Ethane; Ethylene}
1/0087 . . {Propane; Propylene}
1/009 . . {Hydrocarbons with four or more carbon atoms}
1/0092 . . . {Mixtures of hydrocarbons comprising possibly also minor amounts of nitrogen}
1/0095 . . {Oxides of carbon, e.g. CO₂}
1/0097 . . . {Others, e.g. F-, Cl-, HF-, HClF-, HCl- hydrocarbons etc. or mixtures thereof}
1/02 . . requiring the use of refrigeration, e.g. of helium or hydrogen (Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process)
1/0201 . . . {using only internal refrigeration means, i.e. without external refrigeration}
1/0202 {in a quasi-closed internal refrigeration loop (F25J 1/0208, F25J 1/0219, F25J 1/0224 take precedence)}
[using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle (F25J 1/0211 takes precedence)]

[as a single flow SCR cycle]

[as a dual level SCR refrigeration cascade]

[as at least a three level SCR refrigeration cascade]

[in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop (F25J 1/0211 takes precedence)]

[as at least a three level refrigeration cascade]

[using a deep flash recycle loop]

[using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle]

[as a single flow MCR cycle]

[as a dual level refrigeration cascade with at least one MCR cycle]

[with one SCR cycle]

[using a C3 pre-cooling cycle]

[as at least a three level refrigeration cascade with at least one MCR cycle]

[with one or more SCR cycles, e.g. with a C3 pre-cooling cycle]

[in combination with an internal quasi-closed refrigeration loop, e.g. using a deep flash recycle loop]

[using the cold stored in an external cryogenic component in an open refrigeration loop]

[in combination with an intermediate heat exchange fluid between the cryogenic component and the fluid to be liquefied (F25J 1/0224 takes precedence)]

[in combination with the subsequent re-vaporisation of the originally liquefied gas at a second location to produce the external cryogenic component]

[in combination with an internal quasi-closed refrigeration loop (F25J 1/0208, F25J 1/0219 take precedence)]

[using other external refrigeration means not provided before, e.g. heat driven absorption chillers]

[within a refrigeration cascade]

[Coupling of the liquefaction unit to other units or processes, so-called integrated processes (combined plants, e.g. engine plant combined with an industrial process F01K 23/064: gas turbine plants in combination with other processes F02C 6/00)]

[Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock]

[for the combustion as fuels, i.e. integration with the fuel gas system]

[for the working-up of the hydrocarbon feed, e.g. re-injection of heavier hydrocarbons into the liquefied gas]

[integration within a pressure letdown station of a high pressure pipeline system]

[Integration with a cryogenic air separation unit (cryogenic separation of air F25J 3/04)]

[Heat exchange integration]

[providing refrigeration for different processes treating not the same feed stream]

[integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas (details related to rectification F25J 3/02; details related to partial condensation F25J 3/06; working-up natural gas C10L 3/10)]

[Purification or treatment step is integrated within one refrigeration cycle only, i.e. the same or single refrigeration cycle provides feed gas cooling (if present) and overhead gas cooling]

[Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling]

[wherein the overhead cooling comprises providing reflux for a fractionation step]

[Waste heat recovery, e.g. from heat of compression]

[Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used]

[Operation; Control and regulation; Instrumentation (F25J 1/0279 takes precedence)]

[Different modes, i.e. 'runs', of operation; Process control]

[start-up of the process]

[Stopping of the process, e.g. defrosting or derining, maintenance; Back-up mode or systems]

[Controlling refrigerant inventory, i.e. composition or quantity (charging or discharging refrigerants in cooling systems F25B 45/00)]

[Details related to the refrigerant production or treatment, e.g. make-up supply from feed gas itself]

[Intermittent or alternating process, so-called batch process, e.g. "peak-shaving"]

[Control strategy, e.g. advanced process control or dynamic modeling]

[controlling particular process parameter, e.g. pressure, temperature]

[controlling the composition of the feed or liquefied gas, e.g. to achieve a particular heating value of natural gas]

[Safety aspects of operation (F25J 1/0298 takes precedence)]

[Construction and layout of liquefaction equipments, e.g. valves, machines (F25J 1/0279 takes precedence)]

[vertical layout of the equipments within in the cold box]

[Modularity and arrangement of parts of the liquefaction unit and in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"]
1/0261 {Details of cold box insulation, housing and internal structure (buildings forming parts of cooling plants E04H 5/10)}
1/0262 {Details of the cold heat exchange system (constructional details F25J 5/00, construction of cold-exchangers in general F28)}
1/0263 {using different types of heat exchangers}
1/0264 {Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams (F25J 1/0272 takes precedence)}
1/0265 {comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer}
1/0266 {using flash gas as heat sink}
1/0267 {using a dedicated refrigeration means (F25J 1/0296 takes precedence)}
1/0268 {Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept (F25J 1/0294 takes precedence)}
1/0269 {Inter-connecting multiple hot equipments upstream of the cold box}
1/027 {Inter-connecting multiple cold equipments within or downstream of the cold box}
1/0271 {Multiple identical heat exchangers in parallel}
1/0272 {Retrofitting or revamping of an existing liquefaction unit}
1/0273 {adapted for special use of the liquefaction unit, e.g. portable or transportable devices}
1/0274 {Laboratory or other miniature devices}
1/0275 {Offshore use, e.g. during shipping}
1/0276 {Unit being stationary, e.g. on floating barge or fixed platform}
1/0277 {Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.}
1/0278 {characterised by the type of prime driver, e.g. hot gas expander}
1/0279 {Steam turbine as the prime mechanical driver}
1/028 {Gas turbine as the prime mechanical driver}
1/0281 {Electrical motor as the prime mechanical driver}
1/0282 {Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings}
1/0283 {including an electrical motor}
1/0284 {using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called comparanders}
1/0285 {Use of different types of prime drivers of at least two refrigerant compressors in a cascade refrigeration system}
1/0286 {Mechanically coupling of different refrigerant compressors in a cascade refrigeration system to a common driver}
1/0287 {Refrigerant compression by combined gas compression and liquid pumping}
1/0288 {Refrigerant compression by cold or cryogenic suction of the refrigerant gas}
1/0289 {Multiple compressor casings/strings in parallel, e.g. split arrangement}
1/029 {Shifting of the compression load between different cooling stages within a refrigerant cycle or within a cascade refrigeration system}
1/0291 {Removal of the heat of compression, e.g. within an inter- or after-stage-cooler against an ambient heat sink}
1/0292 {using an externally chilled fluid, e.g. chilled water}
1/0293 {Safety aspects and control of the refrigerant compression system, e.g. anti-surge control}

3/00 Processes or apparatus for separating the constituents of gaseous (or liquefied gaseous) mixtures involving the use of liquefaction or solidification
3/02 by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream (F25J 3/08 takes precedence ; purification of hydrocarbons in general C07C 7/00)}
3/0204 {characterised by the feed stream (for air F25J 3/04)}
3/0209 {Natural gas or substitute natural gas}
3/021 {Liquefied natural gas}
3/0219 {Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature}
3/022 {H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas (production of carbon monoxide containing gas in general C01B 32/40, C10J, C10K; production of hydrogen containing gas C01B 3/00)}
3/0228 {characterised by the separated product stream}
3/023 {separation of CnHm with 1 carbon atom or more}
3/0238 {separation of CnHm with 2 carbon atoms or more}
3/0242 {separation of CnHm with 3 carbon atoms or more}
3/0247 {separation of CnHm with 4 carbon atoms or more}
3/0252 {separation of hydrogen (production of hydrogen containing gas in general C01B 3/00, e.g. separation of hydrogen or hydrogen containing gases form gaseous mixtures at low temperatures C01B 3/006)}
3/0257 {separation of nitrogen (from air F25J 3/04, production of nitrogen in general C01B 21/00)}
3/0261 {separation of carbon monoxide (production of carbon monoxide containing gas in general C01B 32/40, C10J, C10K)}
3/0266 {separation of carbon dioxide (production of carbon dioxide in general C01B 32/00)}
3/0271 {separation of H2/CO mixtures, i.e. of synthesis gas (production of carbon monoxide containing gas in general C01B 32/40, C10J, C10K; production of hydrogen containing gas C01B 3/00)}
3/0276 . . . [separation of H2/N2 mixtures, i.e. of ammonia synthesis gas (in general C01B 3/00)]
3/028 . . . [separation of noble gases (from air F25J 3/04642; in general C01B 23/00)]
3/0285 . . . [of argon]
3/029 . . . [of helium]
3/0295 . . . [Start-up or control of the process; Details of the apparatus used, e.g. sieve plates, packings]
3/04 . . . for air
3/04006 . . . [Providing pressurised feed air or process streams within or from the air fractionation unit]
3/04012 . . . [by compression of warm gaseous streams; details of intake or interstage cooling (F25J 3/04048 takes precedence; operation of compressors F25J 3/04781; particular layout of compressors used in air fractionation units F25J 3/04866)]
3/04018 . . . [of main feed air]
3/04024 . . . [of purified feed air, so-called boosted air]
3/0403 . . . [of nitrogen]
3/04036 . . . [of oxygen]
3/04042 . . . [of argon or argon enriched stream]
3/04048 . . . [by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams]
3/04054 . . . [of air]
3/0406 . . . [of nitrogen]
3/04066 . . . [of oxygen]
3/04072 . . . [of argon or argon enriched stream]
3/04078 . . . [providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression (operation of pumps F25J 3/04781; particular layout of pumps used in air fractionation units F25J 3/04866)]
3/04084 . . . [of nitrogen]
3/0409 . . . [of oxygen]
3/04096 . . . [of argon or argon enriched stream]
3/04103 . . . [using solely hydrostatic liquid head]
3/04109 . . . [Arrangements of compressors and/or their drivers (using work extraction by mechanical coupling of compression and cold expansion F25J 3/04381)]
3/04115 . . . [characterised by the type of prime driver, e.g. hot gas expander]
3/04121 . . . [Steam turbine as the prime mechanical driver]
3/04127 . . . [Gas turbine as the prime mechanical driver]
3/04133 . . . [Electrical motor as the prime mechanical driver]
3/04139 . . . [Combination of different types of drivers mechanically coupled to the same compressor, possibly split on multiple compressor casings]
3/04145 . . . [Mechanically coupling of different compressors of the air fractionation process to the same driver(s)]
3/04151 . . . [Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams]
3/04157 . . . [Afterstage cooling and so-called “pre-cooling” of the feed air upstream the air purification unit and main heat exchange line (F25J 3/04618 takes precedence)]
3/04163 . . . [Hot end purification of the feed air (arrangements of cold regenerators F25J 5/00)]
3/04169 . . . [by adsorption of the impurities (adsorption in general B01D 53/02)]
3/04175 . . . [at a pressure of substantially more than the highest pressure column]
3/04181 . . . [Regenerating the adsorbents]
3/04187 . . . [Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams (arrangements of cold exchangers F25J 5/00)]
3/04193 . . . [Division of the main heat exchange line in consecutive sections having different functions]
3/042 . . . [having an intermediate feed connection]
3/04206 . . . [including a so-called "auxiliary vapouriser" for vapourising and producing a gaseous product]
3/04212 . . . [and simultaneously condensing vapor from a column serving as reflux within the or another column]
3/04218 . . . [Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores (F25J 3/04503 takes precedence)]
3/04224 . . . [Cores associated with a liquefaction or refrigeration cycle]
3/0423 . . . [Subcooling of liquid process streams]
3/04236 . . . [Integration of different exchangers in a single core, so-called integrated cores (F25J 3/04624 takes precedence)]
3/04242 . . . [Cold end purification of the feed air]
3/04248 . . . [Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion]
3/04254 . . . [using the cold stored in external cryogenic fluids (closed loop F25J 3/04278)]
3/0426 . . . [The cryogenic component does not participate in the fractionation]
3/04266 . . . [and being liquefied hydrocarbons]
3/04272 . . . [and comprising means for reducing the risk of pollution of hydrocarbons into the air fractionation]
3/04278 . . . [using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units]
3/04284 . . . [using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams (F25J 3/04333 takes precedence)]
3/0429 . . . [of feed air, e.g. used as waste or product air or expanded into an auxiliary column]
3/04296 . . . [Claude expansion, i.e. expanded into the main or high pressure column]
3/04303 . . . [Lachmann expansion, i.e. expanded into oxygen producing or low pressure column]
3/04309 . . . [of nitrogen]
produced within the air fractionation unit and using the cold from cryogenic liquids for producing oxygen as a mixing column (F25J 3/0446, F25J 3/04715 take precedence) using at least a triple pressure main column system (F25J 3/04624, F25J 3/04715 take precedence) using a dual pressure main column system and F25J 3/04636 system only (F25J 3/0446, F25J 3/04624 take precedence) using a single pressure main column system only (F25J 3/0446, F25J 3/04624, F25J 3/04636 take precedence) using the heat generated by mixing two different phases for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages for controlling purposes, e.g. start-up or back-up procedures (F25J 3/04496 takes precedence) for purity control during steady state operation for rapid load change of the air fractionation unit for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation unit and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line. (waste-)streams Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders using liquid or hydraulic turbine expansion using multiple or multistage gas work expansion [using a single pressure main column system only (F25J 3/0446, F25J 3/04624, F25J 3/04636 take precedence)] using a dual pressure main column system (F25J 3/0446, F25J 3/04624, F25J 3/04636 and F25J 3/04715 take precedence) in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column with thermally overlapping high and low pressure columns without thermally coupled high and low pressure columns, i.e. a so-called split columns [A main column system not otherwise provided, e.g. a modified double column flowsheet] [using at least a triple pressure main column system (F25J 3/0446, F25J 3/04624, F25J 3/04636 and F25J 3/04715 take precedence)] in a double column flowsheet with a high pressure pre-rectifier in a double column flowsheet with an intermediate pressure column [a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels] [using the heat generated by mixing two different phases] [for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen] [using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages] [for controlling purposes, e.g. start-up or back-up procedures (F25J 3/04496 takes precedence)] for purity control during steady state operation for rapid load change of the air fractionation unit for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation unit and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line. (waste-)streams Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders using liquid or hydraulic turbine expansion using multiple or multistage gas work expansion [using a single pressure main column system only (F25J 3/0446, F25J 3/04624, F25J 3/04636 take precedence)] using a dual pressure main column system (F25J 3/0446, F25J 3/04624, F25J 3/04636 and F25J 3/04715 take precedence) in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column with thermally overlapping high and low pressure columns without thermally coupled high and low pressure columns, i.e. a so-called split columns [A main column system not otherwise provided, e.g. a modified double column flowsheet] [using at least a triple pressure main column system (F25J 3/0446, F25J 3/04624, F25J 3/04636 and F25J 3/04715 take precedence)] in a double column flowsheet with a high pressure pre-rectifier in a double column flowsheet with an intermediate pressure column [a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels] [using the heat generated by mixing two different phases] [for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen] [using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages] [for controlling purposes, e.g. start-up or back-up procedures (F25J 3/04496 takes precedence)] for purity control during steady state operation for rapid load change of the air fractionation unit for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation unit and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line. (waste-)streams Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders using liquid or hydraulic turbine expansion using multiple or multistage gas work expansion [using a single pressure main column system only (F25J 3/0446, F25J 3/04624, F25J 3/04636 take precedence)] using a dual pressure main column system (F25J 3/0446, F25J 3/04624, F25J 3/04636 and F25J 3/04715 take precedence) in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column with thermally overlapping high and low pressure columns without thermally coupled high and low pressure columns, i.e. a so-called split columns [A main column system not otherwise provided, e.g. a modified double column flowsheet] [using at least a triple pressure main column system (F25J 3/0446, F25J 3/04624, F25J 3/04636 and F25J 3/04715 take precedence)] in a double column flowsheet with a high pressure pre-rectifier in a double column flowsheet with an intermediate pressure column [a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels] [using the heat generated by mixing two different phases] [for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen] [using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages] [for controlling purposes, e.g. start-up or back-up procedures (F25J 3/04496 takes precedence)] for purity control during steady state operation for rapid load change of the air fractionation unit for compensating variable air feed or variable product demand by alternating between periods of liquid storage and liquid assist by exchanging "cold" between at least two different cryogenic liquids, e.g. independently from the main heat exchange line of the air fractionation unit and/or by using external alternating storage systems within the cold part of the air fractionation, i.e. exchanging "cold" within the fractionation and/or main heat exchange line. (waste-)streams Details relating to the work expansion, e.g. process parameter etc. using work extraction by mechanical coupling of compression and expansion so-called companders using liquid or hydraulic turbine expansion using multiple or multistage gas work expansion [using a single pressure main column system only (F25J 3/0446, F25J 3/04624, F25J 3/04636 take precedence)] using a dual pressure main column system (F25J 3/0446, F25J 3/04624, F25J 3/04636 and F25J 3/04715 take precedence) in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column with thermally overlapping high and low pressure columns without thermally coupled high and low pressure columns, i.e. a so-called split columns [A main column system not otherwise provided, e.g. a modified double column flowsheet] [using at least a triple pressure main column system (F25J 3/0446, F25J 3/04624, F25J 3/04636 and F25J 3/04715 take precedence)] in a double column flowsheet with a high pressure pre-rectifier in a double column flowsheet with an intermediate pressure column [a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels] [using the heat generated by mixing two different phases] [for producing oxygen as a mixing column overhead gas by mixing gaseous air feed and liquid oxygen] [using the cold from cryogenic liquids produced within the air fractionation unit and stored in internal or intermediate storages]
Start-up or control of the process; Details of
F25J 3/0685
Gas mixtures other than air F25J 3/028
Recovering noble gases from air (from
or precedence)
and non-cryogenic separation techniques
combined process by cryogenic separation
using a hybrid air separation unit, e.g.
take dephlegmator, reflux exchanger

Air purification and pre-cooling

Producing pure argon, e.g. recovered
from a crude argon column

Having a top condenser

Cooled by oxygen enriched liquid from high pressure column bottoms

[and a bottom re-boiler (F25J 3/04696 takes precedence)]

[and an intermediate re-boiler/condenser (F25J 3/04696 takes precedence)]

[a bottom re-boiler and an intermediate re-boiler/condenser]

[being arranged in more than one vessel]

The auxiliary column system simultaneously produces oxygen

Producing pure argon, e.g. recovered from a crude argon column

Using an auxiliary pure argon column for nitrogen rejection (F25J 3/04739 takes precedence)

Using a hybrid system, e.g. using adsorption, permeation or catalytic reaction

In combination with an auxiliary pure argon column

[Krypton and/or Xenon]

Producing pure krypton and/or xenon recovered from a crude krypton/xenon mixture

Using a hybrid system, e.g. using adsorption, permeation or catalytic reaction

Start-up or control of the process; Details of the apparatus used

Operation, control and regulation of the process; Instrumentation within the process

Air purification and pre-cooling

Pressure changing devices, e.g. for compression, expansion, liquid pumping

Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser (F25J 3/04793 and F25J 3/0486 take precedence)

Rectification, e.g. columns; Reboiler-condenser (F25J 3/0486 takes precedence)

Argon recovery

[High purity argon purification]

Different modes, i.e. "runs" of operation (F25J 3/04472 takes precedence)

Start-up of the process

Stopping of the process, e.g. defrosting or deriming; Back-up procedures

RAPID load change of the air fractionation unit

Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs (F25J 3/0483 takes precedence)

Intermittent process, so-called batch process

Control strategy, e.g. advanced process control or dynamic modeling

Safety aspects of operation

[of vaporisers for oxygen enriched liquids, e.g. purging of liquids]

Construction and layout of air fractionation equipments, e.g. valves, machines (F25J 5/00 takes precedence)

Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.

Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column (multiple vessels of a crude argon column F25J 3/04703)

Arrangement of reboiler-condensers

Modularity and arrangement of parts of the air fractionation unit, in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot" (F25J 3/04872 takes precedence)

Details of columns, e.g. internals, inlet/outlet devices

[Plates or trays]

[Structured packings]

[Combinations of different material exchange elements, e.g. within different columns]

(within the same column)

[Liquid or gas distribution devices]

[Partitioning walls or sheets]

[Vertical, e.g. dividing wall columns (details of dephlegmators F25J 5/007)]
3/0495 (Details of internal structure; insulation and housing of the cold box)
3/04951 (Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network (F25J 3/04636 takes precedence))
3/04957 (and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the “front-end”)
3/04963 (and inter-connecting equipment within or downstream of the fractionation unit(s) (F25J 3/04393 takes precedence))
3/04969 [Retrofitting or revamping of an existing air fractionation unit]
3/04975 [adapted for special use of the air fractionation unit, e.g. transportable devices by truck or small scale use]
3/04981 (for portable medical or home use)
3/04987 (for offshore use)
3/04993 (for space applications, e.g. for rocket use)
3/06 . . . by partial condensation (F25J 3/08 takes precedence; by rectification F25J 3/02 ; purification of hydrocarbons in general C07C 7/00))
3/0605 (characterised by the feed stream (for air F25J 3/04))
3/061 (Natural gas or substitute natural gas)
3/0615 (Liquefied natural gas)
3/062 (Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature)
3/0625 (H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas (production of carbon monoxide containing gas in general C01B 32/40, C10J, C10K; production of hydrogen containing gas C01B 3/00))
3/063 (characterised by the separated product stream)
3/0635 (separation of CnHm with 1 carbon atom or more)
3/064 (separation of CnHm with 2 carbon atoms or more)
3/0645 (separation of CnHm with 3 carbon atoms or more)
3/065 (separation of CnHm with 4 carbon atoms or more)
3/0655 (separation of hydrogen (production of hydrogen containing gas in general C01B 3/00, e.g. separation of hydrogen or hydrogen containing gases form gaseous mixtures at low temperatures C01B 3/06))
3/066 (separation of nitrogen (from air F25J 3/04, production of nitrogen in general C01B 21/00))
3/0665 (separation of carbon monoxide (production of carbon monoxide containing gas in general C01B 32/40, C10J, C10K))
3/067 (separation of carbon dioxide (production of carbon dioxide in general C01B 32/00))
3/0675 (separation of H2/CO mixtures, i.e. of synthesis gas (production of carbon monoxide containing gas in general C01B 32/40, C10J, C10K, production of hydrogen containing gas C01B 3/00))
3/068 (separation of H2/N2 mixtures, i.e. of ammonia synthesis gas (in general C01B 3/00))
3/0685 (separation of noble gases (from air F25J 3/04642; in general C01B 23/00))
3/069 (of helium)
3/0695 [Start-up or control of the process; Details of the apparatus used]
3/08 . . Separating gaseous impurities from gases or gaseous mixtures (or liquefied gases or liquefied gaseous mixtures) (cold traps B01D 8/00)
5/00 Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants (heat exchangers F28C, F28D, F28F)
5/002 . . [for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger]
5/005 (in a reboiler-condenser, e.g. within a column)
5/007 (combined with mass exchange, i.e. in a so-called dephlegmator)
2200/00 Processes or apparatus using separation by rectification
2200/02 . . . in a single pressure main column system
2200/04 . . . in a dual pressure main column system
2200/06 . . . in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
2200/08 . . . in a triple pressure main column system
2200/10 . . . in a quadruple, or more, column or pressure system
2200/20 . . . in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
2200/30 . . . using a side column in a single pressure column system
2200/32 . . . using a side column fed by a stream from the high pressure column
2200/34 . . . using a side column fed by a stream from the low pressure column
2200/38 . . . using pre-separation or distributed distillation before a main column system, e.g. in a at least a double column system
2200/40 . . . Features relating to the provision of boil-up in the bottom of a column
2200/50 . . . using multiple (re-)boiler-condensers at different heights of the column
2200/52 . . . in the high pressure column of a double pressure main column system
2200/54 . . . in the low pressure column of a double pressure main column system
2200/70 . . . Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
2200/72 . . . Refluxing the column with at least a part of the totally condensed overhead gas
2200/74 . . . Refluxing the column with at least a part of the partially condensed overhead gas
2200/76 . . . Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
2200/78 . . . Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
Processes or apparatus using other separation and/or other processing means

Processes characterised by the type or other details of the product stream

Processes characterised by the type or other details of the feed stream
Processes or apparatus involving steps for expanding of process streams

2240/00 Processes or apparatus involving steps for expanding of process streams

2240/02 Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream

2240/04 Multiple expansion turbines in parallel

2240/10 the fluid being air

2240/12 the fluid being nitrogen

2240/20 the fluid being oxygen

2240/22 the fluid being oxygen enriched compared to air, e.g. "crude oxygen"

2240/28 the fluid being argon or crude argon

2240/30 Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine

2240/40 Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval

2240/42 the fluid being air

2240/44 the fluid being nitrogen

2240/46 the fluid being oxygen

2240/48 the fluid being oxygen enriched compared to air, e.g. "crude oxygen"

2240/60 Expansion by ejector or injector, e.g. "Gasstrahlpumpe", "venturi mixing", "jet pumps"

2240/70 Steam turbine, e.g. used in a Rankine cycle

2240/80 Hot exhaust gas turbine combustion engine

2240/82 with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle

2240/90 Hot gas waste turbine of an indirect heated gas for power generation

Processes or apparatus involving steps for recycling of process streams

2245/00 Processes or apparatus involving steps for recycling of process streams

2245/02 Recycle of a stream in general, e.g. a by-pass stream

2245/40 the recycled stream being air

2245/42 the recycled stream being nitrogen

2245/50 the recycled stream being oxygen

2245/58 the recycled stream being argon or crude argon

2245/90 the recycled stream being boil-off gas from storage

Details related to the use of reboiler-condensers

2250/00 Details related to the use of reboiler-condensers

2250/02 Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger

2250/04 Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film

2250/10 Boiler-condenser with superposed stages

2250/20 Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing stages

2250/30 External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid

2250/40 One fluid being air

2250/42 One fluid being nitrogen

2250/50 One fluid being oxygen

2250/52 One fluid being oxygen enriched compared to air, e.g. "crude oxygen"

2250/58 One fluid being argon or crude argon

2250/60 the fluid being a mixture of hydrocarbons
Refrigeration techniques used

Coupling of processes or apparatus to other units; Integrated schemes

- Integration in an installation for exchanging heat, e.g. for waste heat recovery
- Integration in a gas transmission system at a pressure reduction, e.g. “let down” station
- Integration in an installation for liquefying or solidifying a fluid stream
- Integration in an installation using renewable energy
- Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery
- Using nitrogen for cooling purposes

Refrigeration techniques used

- Internal refrigeration with liquid vaporising loop
- Internal refrigeration with working-producing gas expansion loop
 - With multiple gas expansion loops
- Internal refrigeration by flash gas recovery loop
- External refrigeration with liquid vaporising loop
- External refrigeration with working-producing gas expansion loop
 - With multiple gas expansion loops of the same refrigerant
- External refrigeration with incorporated cascade loop
- Quasi-closed internal or closed external hydrogen refrigeration cycle
- Quasi-closed internal or closed external carbon monoxide refrigeration cycle
- Quasi-closed internal or closed external helium refrigeration cycle
- Quasi-closed internal or closed external air refrigeration cycle
- Quasi-closed internal or closed external nitrogen refrigeration cycle
- Quasi-closed internal or closed external oxygen refrigeration cycle
- Quasi-closed internal or closed external argon refrigeration cycle
- Closed external refrigeration cycle with single component refrigerant (SCR), e.g. C1-, C2- or C3-hydrocarbons
- Closed external refrigeration cycle with multi component refrigerant (MCR), e.g. mixture of hydrocarbons
- Quasi-closed internal or closed external carbon dioxide refrigeration cycle
- Quasi-closed internal refrigeration or heat pump cycle, if not otherwise provided
- External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Control of the process or apparatus

- Control in general, load changes, different modes ("runs"), measurements
- Control for or during start-up and cooling down of the installation
- Control for stopping, deriming or defrosting after an emergency shut-down of the installation or for back up system
- Control of a discontinuous or intermittent ("batch") process
- Control of freezing of components
- Advanced process control, e.g. adaptive or multivariable control

Other details not covered by groups

- Comparison of processes or apparatuses
- Mathematical formulae, modeling, plot or curves; Design methods
- Particular process parameters like pressure, temperature, ratios
- Particular dimensions; Small scale or microdevices
- Details about heat insulation or cold insulation
- Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers
- Details about subcooling of liquids
- Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.
- Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box
- Materials used, e.g. copper, steel or alloys thereof or surface treatments used, e.g. enhanced surface
- Arrangement of multiple equipments fulfilling the same process step in parallel
- Details about pipelines, i.e. network, for feed or product distribution
- Details of storing a fluid in a tank
- Processing device is mobile or transportable, e.g. by hand, car, ship, rocket engine etc.
- Processing device is used off-shore, e.g. on a platform or floating on a ship or barge
- Retrofitting, revamping or debottlenecking of existing plant
- Details about safety operation of the installation