CPC COOPERATIVE PATENT CLASSIFICATION

C CHEMISTRY; METALLURGY

(NOTES omitted)

CHEMISTRY

C07 ORGANIC CHEMISTRY

(NOTES omitted)

C07D HETEROCYCLIC COMPOUNDS (macromolecular compounds <u>C08</u>)

NOTES

- 1. This subclass <u>does not cover</u> compounds containing saccharide radicals as defined in Note (3) following the title of subclass <u>C07H</u>, which are covered by subclass <u>C07H</u>.
- In this subclass, in compounds containing a hetero ring covered by group <u>C07D 295/00</u> and at least one other hetero ring, the hetero ring covered by group <u>C07D 295/00</u> is considered as an acyclic chain containing nitrogen atoms.
- 3. In this subclass, the following terms or expressions are used with the meaning indicated:
 - "hetero ring" is a ring having at least one halogen, nitrogen, oxygen, sulfur, selenium or tellurium atom as a ring member;
 - "bridged" means the presence of at least one fusion other than ortho, peri or spiro;
 - two rings are "condensed" if they share at least one ring member, i.e. "spiro" and "bridged" are considered as condensed;
 - "condensed ring system" is a ring system in which all rings are condensed among themselves;
 - "number of relevant rings" in a condensed ring system equals the number of scissions necessary to convert the ring system into one acyclic chain;
 - "relevant rings" in a condensed ring system, i.e. the rings which taken together describe all the links between every atom of the ring system, are chosen according to the following criteria consecutively:
 - a. lowest number of ring members;
 - b. highest number of hetero atoms as ring members;
 - c. lowest number of members shared with other rings;
 - d. last place in the classification scheme.
- 4. Attention is drawn to Note (3) after class <u>C07</u>, which defines the last place priority rule applied in the range of subclasses <u>C07C</u> <u>C07K</u> and within these subclasses.
- 5. Therapeutic activity of compounds is further classified in subclass A61P.
- 6. In this subclass, the last place priority rule is applied, i.e. at each hierarchical level, in the absence of an indication to the contrary:
 - a. compounds having only one hetero ring are classified in the last appropriate place in one of the groups <u>C07D 203/00</u> - <u>C07D 347/00</u>. The same applies for compounds having more hetero rings covered by the same main group, neither condensed among themselves nor condensed with a common carbocyclic ring system;
 - compounds having two or more hetero rings covered by different main groups neither condensed among themselves nor condensed with a common carbocyclic ring system are classified in the last appropriate place in one of the groups <u>C07D 401/00</u> - <u>C07D 421/00</u>;
 - c. compounds having two or more relevant hetero rings, covered by the same or by different main groups, which are condensed among themselves or condensed with a common carbocyclic ring system, are classified in the last appropriate place in one of the groups C07D 451/00 C07D 519/00.
- 7. In this subclass:
 - where a compound may exist in tautomeric forms, it is classified as though existing in the form which is classified last in the system. Therefore, double bonds between ring members and non-ring members and double bonds between ring members themselves are considered equivalent in determining the degree of hydrogenation of the ring. Formulae are considered to be written in Kekule form;
 - hydrocarbon radicals containing a carbocyclic ring and an acyclic chain by which it is linked to the hetero ring and being substituted on both the carbocyclic ring and the acyclic chain by hetero atoms or by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, are classified according to the substituents on the acyclic chain. For example, the compound

^{Г№н} _N┵СН₂-СН-СН₂-**(_)**́[×] ц ОН

is classified in group C07D 233/22, and the compound

Heterocyclic compounds having only nitrogen as ring hetero atom

C07D	
(continued)	is classified in groups C07D 233/24 and C07D 233/26, where X —NH ₂ , —NHCOCH ₃ , or —COOCH ₃ .

Heterocyclic compounds having only nitrogen as ring hetero atom

201/00	Preparation, separation, purification or stabilisation of unsubstituted lactams
201/02	Preparation of lactams
201/04	. from or via oximes by Beckmann rearrangement
201/06	from ketones by simultaneous oxime formation and rearrangement
201/08	 from carboxylic acids or derivatives thereof, e.g. hydroxy carboxylic acids, lactones or nitriles
201/10	• from cycloaliphatic compounds by simultaneous nitrosylation and rearrangement
201/12	• • by depolymerising polyamides
201/14	. Preparation of salts or adducts of lactams
201/16	. Separation or purification
201/18	• Stabilisation

203/00	Heterocyclic compounds containing three-
	membered rings with one nitrogen atom as the
	only ring hetero atom
203/02	• Preparation by ring-closure
203/04	 not condensed with other rings
203/06	• having no double bonds between ring members or between ring members and non-ring members
203/08	• • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring nitrogen atom
203/10	Radicals substituted by singly bound oxygen atoms
203/12	Radicals substituted by nitrogen atoms not forming part of a nitro radical
203/14	•••• with carbocyclic rings directly attached to the ring nitrogen atom
203/16	• • • with acylated ring nitrogen atoms
203/18	• • • by carboxylic acids, or by sulfur or nitrogen analogues thereof
203/20	by carbonic acid, or by sulfur or nitrogen analogues thereof, e.g. carbamates
203/22	with hetero atoms directly attached to the ring nitrogen atom
203/24	Sulfur atoms
203/26	. condensed with carbocyclic rings or ring systems
205/00	Heterocyclic compounds containing four-
	membered rings with one nitrogen atom as the
	only ring hetero atom
205/02	• not condensed with other rings
205/04	• having no double bonds between ring members or between ring members and non-ring members
205/06	having one double bond between ring members or between a ring member and a non-ring member
205/08	• • with one oxygen atom directly attached in position 2, e.g. beta-lactams
205/085	• • • with a nitrogen atom directly attached in position 3
205/09	• • • with a sulfur atom directly attached in position 4
205/095	and with a nitrogen atom directly attached in position 3

205/10 . . having two double bonds between ring members or between ring members and non-ring members 205/12 . condensed with carbocyclic rings or ring systems 207/00 Heterocyclic compounds containing fivemembered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom NOTE Pyrrolidines having only hydrogen atoms attached to the ring carbon atoms are classified in C07D 295/00 207/02 . with only hydrogen or carbon atoms directly attached to the ring nitrogen atom 207/04 . . having no double bonds between ring members or between ring members and non-ring members 207/06 . . . with radicals, containing only hydrogen and carbon atoms, attached to ring carbon atoms 207/08 . . . with hydrocarbon radicals, substituted by hetero atoms, attached to ring carbon atoms 207/09 . . . Radicals substituted by nitrogen atoms, not forming part of a nitro radical 207/10 . . . with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms 207/12. . . Oxygen or sulfur atoms 207/14 . . . Nitrogen atoms not forming part of a nitro radical 207/16 . . . Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals 207/18 . . having one double bond between ring members or between a ring member and a non-ring member 207/20 . . . with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms 207/22 . . . with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms 207/24 . . . Oxygen or sulfur atoms 207/26 2-Pyrrolidones 207/263 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms 207/267 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals 207/27 directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms 207/273 having three bonds to hetero atoms with at the most one bond to halogen, e.g.

ester or nitrile radicals, directly attached

2

to other ring carbon atoms

207/277	•••••• Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
207/28	• • • • • • • • 2-Pyrrolidone-5- carboxylic acids; Functional derivatives thereof, e.g. esters, nitriles
207/30	• having two double bonds between ring members or between ring members and non-ring members
207/32	 with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
207/323	• • • • with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to the ring nitrogen atoms
207/325	with substituted hydrocarbon radicals directly attached to the ring nitrogen atom
207/327	••••• Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
207/33	• • • with substituted hydrocarbon radicals, directly attached to ring carbon atoms
207/333	Radicals substituted by oxygen or sulfur atoms
207/335	••••••••••••••••••••••••••••••••••••••
207/337	••••• Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
207/34	• • • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
207/36	Oxygen or sulfur atoms
207/38	2-Pyrrolones
207/40	2,5-Pyrrolidine-diones
207/404	••••• with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. succinimide
207/408	Radicals containing only hydrogen and carbon atoms attached to ring carbon atoms
207/412	••••• Acyclic radicals containing more than six carbon atoms
207/416	••••••••••••••••••••••••••••••••••••••
207/42	Nitro radicals
207/44	• having three double bonds between ring members or between ring members and non-ring members
207/444	• • having two doubly-bound oxygen atoms directly attached in positions 2 and 5
207/448	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide
207/452	•••• with hydrocarbon radicals, substituted by hetero atoms, directly attached to the ring nitrogen atom

207/456	• • • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to other ring carbon atoms
207/46	• with hetero atoms directly attached to the ring
207/49	nitrogen atom
207/48	. Sulfur atoms
207/50	• Nitrogen atoms
209/00	Heterocyclic compounds containing five- membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
209/02	 condensed with one carbocyclic ring
209/04	Indoles; Hydrogenated indoles
209/06	• • Preparation of indole from coal-tar
209/08	• • • with only hydrogen atoms or radicals
	containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
209/10	with substituted hydrocarbon radicals attached
	to carbon atoms of the hetero ring
209/12	Radicals substituted by oxygen atoms
209/14	Radicals substituted by nitrogen atoms, not forming part of a nitro radical
209/16	Tryptamines
209/18	• • • Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
209/20	••••• substituted additionally by nitrogen atoms, e.g. tryptophane
209/22	with an aralkyl radical attached to the ring nitrogen atom
209/24	• • • • with an alkyl or cycloalkyl radical attached to the ring nitrogen atom
209/26	with an acyl radical attached to the ring nitrogen atom
209/28	1-(4-Chlorobenzoyl)-2-methyl- indolyl-3-acetic acid, substituted in position 5 by an oxygen or nitrogen atom; Esters thereof
209/30	• • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
209/32	Oxygen atoms
209/34	\ldots in position 2
209/36	in position 3, e.g. adrenochrome
209/38	in positions 2 and 3, e.g. isatin
209/40	Nitrogen atoms, not forming part of a nitro radical, e.g. isatin semicarbazone
209/42	•••• Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
209/43	• • • with an —OCH ₂ CH(OH)CH ₂ NH ₂ radical, which may be further substituted, attached in positions 4, 5, 6 or 7
209/44	. Iso-indoles; Hydrogenated iso-indoles
209/46	• • • with an oxygen atom in position 1
209/48	• • • with oxygen atoms in positions 1 and 3, e.g. phthalimide
209/49	•••• and having in the molecule an acyl radical containing a saturated three-membered ring, e.g. chrysanthemumic acid esters

209/50	with oxygen and nitrogen atoms in positions 1 and 3
209/52	• • condensed with a ring other than six-membered
209/54	Spiro-condensed
209/56	. Ring systems containing three or more rings
209/58	[b]- or [c]-condensed
209/60	Naphtho [b] pyrroles; Hydrogenated naphtho [b] pyrroles
209/62	 Naphtho [c] pyrroles; Hydrogenated naphtho [c] pyrroles
209/64	•••• with an oxygen atom in position 1
209/66	• • • • with oxygen atoms in positions 1 and 3
209/68	•••• with oxygen and nitrogen atoms in positions 1 and 3
209/70	• • containing carbocyclic rings other than six- membered
209/72	• • • 4,7-Endo-alkylene-iso-indoles
209/74	•••• with an oxygen atom in position 1
209/76	•••• with oxygen atoms in positions 1 and 3
209/78	• • • with oxygen and nitrogen atoms in positions 1 and 3
209/80	• [b, c]- or [b, d]-condensed
209/82	Carbazoles; Hydrogenated carbazoles
209/84	Separation, e.g. from tar; Purification
209/86	with only hydrogen atoms, hydrocarbon or
	substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
209/88	••••• with hetero atoms or with carbon atoms having three bonds to hetero atoms with at
	the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
209/90	• • Benzo [c, d] indoles; Hydrogenated benzo [c, d] indoles
209/92	Naphthostyrils
209/94	• • • containing carbocyclic rings other than six- membered
209/96	Spiro-condensed ring systems
211/00	Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
	<u>NOTES</u>
	1. In this group, the following term is used with the
	meaning indicated:
	 "hydrogenated" means having less than three double bonds between ring members or
	between ring members and non-ring members.
	2. Piperidines having only hydrogen atoms attached
	to the ring carbon atoms are classified in
	<u>C07D 295/00</u>
211/02	• Preparation by ring-closure or hydrogenation
211/04	• with only hydrogen or carbon atoms directly
·	attached to the ring nitrogen atom
211/06	• having no double bonds between ring members or between ring members and non-ring members
211/08	with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
211/10	with radicals containing only carbon and
	hydrogen atoms attached to ring carbon
	atoms
211/12	• • • • • with only hydrogen atoms attached to the
	ring nitrogen atom

211/14	•••• with hydrocarbon or substituted hydrocarbon radicals attached to the ring nitrogen atom
211/16	• • • • • with acylated ring nitrogen atom
211/18	• • • • with substituted hydrocarbon radicals
	attached to ring carbon atoms
211/20	•••• with hydrocarbon radicals, substituted by
	singly bound oxygen or sulphur atoms
211/22	•••• by oxygen atoms
211/24	••••• by sulfur atoms to which a second
	hetero atom is attached
211/26	••••• with hydrocarbon radicals, substituted by
211/20	nitrogen atoms
211/28	to which a second hetero atom is
211/20	attached
211/20	
211/30	••••• with hydrocarbon radicals, substituted
	by doubly bound oxygen or sulfur atoms
	or by two oxygen or sulfur atoms singly
	bound to the same carbon atom
211/32	• • • • • by oxygen atoms
211/34	••••• with hydrocarbon radicals, substituted
	by carbon atoms having three bonds to
	hetero atoms with at the most one bond to
	halogen, e.g. ester or nitrile radicals
211/36	• • • with hetero atoms or with carbon atoms having
	three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile
	radicals, directly attached to ring carbon atoms
211/38	Halogen atoms or nitro radicals
211/40	Oxygen atoms
211/42	attached in position 3 or 5
211/42	attached in position 5
211/46	having a hydrogen atom as the second
211/40	substituent in position 4
211/48	having an acyclic carbon atom attached
211/40	in position 4
211/50	
	• • • • • • • Aroyl radical
211/52	having an aryl radical as the second
211/54	substituent in position 4
211/54	Sulfur atoms
211/56	Nitrogen atoms (nitro radicals <u>C07D 211/38</u>)
211/58	attached in position 4
211/60	Carbon atoms having three bonds to hetero
	atoms with at the most one bond to halogen,
	e.g. ester or nitrile radicals
211/62	attached in position 4
211/64	having an aryl radical as the second
	substituent in position 4
211/66	having a hetero atom as the second
	substituent in position 4
211/68	• having one double bond between ring members or
211/00	between a ring member and a non-ring member
211/70	• • • with only hydrogen atoms, hydrocarbon or
211/70	substituted hydrocarbon radicals, directly
	attached to ring carbon atoms
211/72	• • • with hetero atoms or with carbon atoms having
211/72	three bonds to hetero atoms, with at the most
	one bond to halogen, directly attached to ring
011/74	carbon atoms
211/74	Oxygen atoms
211/76	• • • • attached in position 2 or 6
211/78	Carbon atoms having three bonds to hetero
	atoms with at the most one bond to halogen

211/80	• having two double bonds between ring members or between ring members and non-ring members
211/82	• • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly
011/04	attached to ring carbon atoms
211/84	• • with hetero atoms or with carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen directly attached to ring
211/07	carbon atoms
211/86 211/88	Oxygen atoms
211/88	attached in positions 2 and 6, e.g. glutarimide
211/90	•••• Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
211/92	• with a hetero atom directly attached to the ring nitrogen atom
211/94	. Oxygen atom, e.g. piperidine N-oxide
211/96	• • Sulfur atom
211/98	• • Nitrogen atom
213/00	Heterocyclic compounds containing six-membered
	rings, not condensed with other rings, with one
	nitrogen atom as the only ring hetero atom and
	three or more double bonds between ring members
212/02	or between ring members and non-ring members
213/02	 having three double bonds between ring members or between ring members and non-ring members
213/04	 having no bond between the ring nitrogen atom
210/01	and a non-ring member or having only hydrogen
	or carbon atoms directly attached to the ring
	nitrogen atom
213/06	• • • containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
213/08	• • • Preparation by ring-closure
213/08	•••••• involving the use of ammonia, amines,
215/09	amine salts, or nitriles
213/10	from acetaldehyde or cyclic polymers
	thereof
213/12	from unsaturated compounds
213/127	• • • Preparation from compounds containing
212/122	pyridine rings
213/133	• • • Preparation by dehydrogenation of hydrogenated pyridine compounds
213/14	• • • Preparation from compounds containing
	heterocyclic oxygen
213/16	containing only one pyridine ring
213/18	Salts thereof
213/20	Quaternary compounds thereof
213/22	containing two or more pyridine rings directly linked together, e.g. bipyridyl
213/24	• • • with substituted hydrocarbon radicals attached
	to ring carbon atoms
213/26	Radicals substituted by halogen atoms or nitro radicals
213/28	• • • Radicals substituted by singly-bound oxygen or sulphur atoms
213/30	Oxygen atoms
213/32	Sulfur atoms
213/34	•••• to which a second hetero atom is
	attached
213/36	Radicals substituted by singly-bound
	nitrogen atoms (nitro radicals C07D 213/26)

213/38	•••• having only hydrogen or hydrocarbon
	radicals attached to the substituent
	nitrogen atom
213/40	Acylated substituent nitrogen atom
213/42	having hetero atoms attached to the
	substituent nitrogen atom (nitro radicals
012/44	<u>C07D 213/26</u>) De dieste selectierted het deuthte heure d
213/44	Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two
	such atoms singly-bound to the same carbon
	atom
213/46	Oxygen atoms
213/48	Aldehydo radicals
213/50	••••• Ketonic radicals
213/51	Acetal radicals
213/52	Sulfur atoms
213/53	Nitrogen atoms
213/54	Radicals substituted by carbon atoms having
	three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile
	radicals
213/55	Acids; Esters
213/56	Amides
213/57	•••• Nitriles
213/58	Amidines
213/59	\cdots with at least one of the bonds being to
010/60	sulfur
213/60	with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile
	radicals, directly attached to ring carbon atoms
213/61	Halogen atoms or nitro radicals
213/62	Oxygen or sulfur atoms
213/63	One oxygen atom
213/64	attached in position 2 or 6
213/643	2-Phenoxypyridines; Derivatives
	thereof
213/647	••••• and having in the molecule an acyl
	radical containing a saturated three-
	membered ring, e.g. chrysanthemumic
012/05	acid esters
213/65 213/66	attached in position 3 or 5
215/00	having in position 3 an oxygen atom and in each of the positions
	4 and 5 a carbon atom bound to an
	oxygen, sulphur, or nitrogen atom,
	e.g. pyridoxal
213/67	••••••••••••••••••••••••••••••••••••••
	· · · · · · · · · · · · · · · · · · ·
	bis(hydroxy-methyl)pyridine, i.e.
	bis(hydroxy-methyl)pyridine, i.e. pyridoxine
213/68	bis(hydroxy-methyl)pyridine, i.e. pyridoxine ••••• attached in position 4
213/69	bis(hydroxy-methyl)pyridine, i.e. pyridoxine ••••••••••••••••••••••••••••••••••••
213/69 213/70	bis(hydroxy-methyl)pyridine, i.e. pyridoxine attached in position 4 Two or more oxygen atoms Sulfur atoms
213/69	bis(hydroxy-methyl)pyridine, i.e. pyridoxine attached in position 4 Two or more oxygen atoms Sulfur atoms to which a second hetero atom is
213/69 213/70 213/71	bis(hydroxy-methyl)pyridine, i.e. pyridoxine attached in position 4 Two or more oxygen atoms Sulfur atoms to which a second hetero atom is attached
213/69 213/70 213/71 213/72	 bis(hydroxy-methyl)pyridine, i.e. pyridoxine attached in position 4 Two or more oxygen atoms Sulfur atoms to which a second hetero atom is attached Nitrogen atoms (nitro radicals <u>C07D 213/61</u>)
213/69 213/70 213/71 213/72 213/73	bis(hydroxy-methyl)pyridine, i.e. pyridoxine attached in position 4 Two or more oxygen atoms Sulfur atoms to which a second hetero atom is attached Nitrogen atoms (nitro radicals <u>C07D 213/61</u>) Unsubstituted amino or imino radicals
213/69 213/70 213/71 213/72	bis(hydroxy-methyl)pyridine, i.e. pyridoxine attached in position 4 Two or more oxygen atoms Sulfur atoms to which a second hetero atom is attached Nitrogen atoms (nitro radicals <u>C07D 213/61</u>) Unsubstituted amino or imino radicals Amino or imino radicals substituted by
213/69 213/70 213/71 213/72 213/73	bis(hydroxy-methyl)pyridine, i.e. pyridoxine attached in position 4 Two or more oxygen atoms Sulfur atoms to which a second hetero atom is attached Nitrogen atoms (nitro radicals <u>C07D 213/61</u>) Unsubstituted amino or imino radicals Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon
213/69 213/70 213/71 213/72 213/73	 bis(hydroxy-methyl)pyridine, i.e. pyridoxine attached in position 4 Two or more oxygen atoms Sulfur atoms to which a second hetero atom is attached Nitrogen atoms (nitro radicals <u>C07D 213/61</u>) Unsubstituted amino or imino radicals Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
213/69 213/70 213/71 213/72 213/73 213/74	bis(hydroxy-methyl)pyridine, i.e. pyridoxine attached in position 4 Two or more oxygen atoms Sulfur atoms to which a second hetero atom is attached Nitrogen atoms (nitro radicals <u>C07D 213/61</u>) Unsubstituted amino or imino radicals Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon
213/69 213/70 213/71 213/72 213/73 213/74	 bis(hydroxy-methyl)pyridine, i.e. pyridoxine attached in position 4 Two or more oxygen atoms Sulfur atoms to which a second hetero atom is attached Nitrogen atoms (nitro radicals <u>C07D 213/61</u>) Unsubstituted amino or imino radicals Amino or imino radicals, acylated by
213/69 213/70 213/71 213/72 213/73 213/74	 bis(hydroxy-methyl)pyridine, i.e. pyridoxine attached in position 4 Two or more oxygen atoms Sulfur atoms to which a second hetero atom is attached Nitrogen atoms (nitro radicals <u>C07D 213/61</u>) Unsubstituted amino or imino radicals Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals Amino or imino radicals, acylated by carboxylic or carbonic acids, or by

213/76	to which a second hetero atom is attached (nitro radicals <u>C07D 213/61</u>)
213/77	Hydrazine radicals
213/78	Carbon atoms having three bonds to hetero
	atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
213/79	Acids; Esters
213/80	\ldots \ldots in position 3
213/803	Processes of preparation
213/807	by oxidation of pyridines or condensed pyridines
213/81	Amides; Imides
213/82	\cdots \cdots in position 3
213/83	• • • • Thioacids; Thioesters; Thioamides;
213/84	Thioimides
213/85	••••••••••••••••••••••••••••••••••••••
213/85	Hydrazides; Thio or imino analogues
	thereof
213/87	• • • • • in position 3
213/88	Nicotinoylhydrazones
213/89	• • with hetero atoms directly attached to the ring nitrogen atom
213/90	. having more than three double bonds between ring
	members or between ring members and non-ring
	members
215/00	Heterocyclic compounds containing quinoline or
	hydrogenated quinoline ring systems
215/02	 having no bond between the ring nitrogen atom
210/02	and a non-ring member or having only hydrogen
	atoms or carbon atoms directly attached to the ring
	nitrogen atom
215/04	nitrogen atom • with only hydrogen atoms or radicals containing
215/04	• • with only hydrogen atoms or radicals containing
215/04	-
215/04 215/06	• with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
	• with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly
	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or
	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to
215/06	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom
215/06 215/08	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds
215/06 215/08 215/10	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom
215/06 215/08 215/10	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to
215/06 215/08 215/10 215/12	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms
215/06 215/08 215/10 215/12 215/14	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms
215/06 215/08 215/10 215/12 215/14	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals,
215/06 215/08 215/10 215/12 215/14	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
215/06 215/08 215/10 215/12 215/14	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals,
215/06 215/08 215/10 215/12 215/14 215/16	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
215/06 215/08 215/10 215/12 215/14 215/16 215/18	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms Halogen atoms or nitro radicals
215/06 215/08 215/10 215/12 215/14 215/16 215/18 215/20	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms Halogen atoms or nitro radicals Oxygen atoms
215/06 215/08 215/10 215/12 215/14 215/16 215/18 215/20 215/22	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms Halogen atoms Oxygen atoms attached in position 2 or 4
215/06 215/08 215/10 215/12 215/14 215/16 215/18 215/20 215/22	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms Halogen atoms oxygen atoms otygen atoms only one oxygen atom which is attached in
215/06 215/08 215/10 215/12 215/14 215/16 215/18 215/20 215/22 215/227	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms Halogen atoms or nitro radicals Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 2
215/06 215/08 215/10 215/12 215/14 215/16 215/18 215/20 215/22 215/227	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms Halogen atoms or nitro radicals Oxygen atoms only one oxygen atom which is attached in position 2 only one oxygen atom which is attached in
215/06 215/08 215/10 215/12 215/14 215/16 215/18 215/20 215/22 215/227 215/233	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms Halogen atoms or nitro radicals Oxygen atoms only one oxygen atom which is attached in position 2 only one oxygen atom which is attached in position 4
215/06 215/08 215/10 215/12 215/14 215/16 215/18 215/20 215/22 215/227 215/233 215/24	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms Halogen atoms or nitro radicals Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 2 only one oxygen atom which is attached in position 4 attached in position 8
215/06 215/08 215/10 215/12 215/14 215/16 215/18 215/20 215/22 215/227 215/233 215/24 215/26	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms Halogen atoms or nitro radicals Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 4 attached in position 8 Alcohols; Ethers thereof with halogen atoms or nitro radicals in positions 5, 6 or 7
215/06 215/08 215/10 215/12 215/14 215/16 215/18 215/20 215/22 215/227 215/233 215/24 215/26	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms Halogen atoms or nitro radicals Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 2 attached in position 8 Alcohols; Ethers thereof with halogen atoms or nitro radicals in
215/06 215/08 215/10 215/12 215/14 215/16 215/20 215/22 215/227 215/233 215/24 215/26 215/28	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms Halogen atoms or nitro radicals Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 4 attached in position 8 Alcohols; Ethers thereof with halogen atoms or nitro radicals in positions 5, 6 or 7
215/06 215/08 215/10 215/12 215/14 215/16 215/20 215/22 215/227 215/233 215/24 215/28 215/28 215/30	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms Halogen atoms or nitro radicals Oxygen atoms only one oxygen atom which is attached in position 2 only one oxygen atom which is attached in position 4 Alcohols; Ethers thereof Alcohols; Ethers thereof with halogen atoms or nitro radicals in positions 5, 6 or 7 Metal salts; Chelates
215/06 215/08 215/10 215/12 215/14 215/16 215/18 215/20 215/22 215/227 215/233 215/24 215/26 215/28 215/30 215/32	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom with acylated ring nitrogen atom Quaternary compounds with substituted hydrocarbon radicals attached to ring carbon atoms Radicals substituted by oxygen atoms with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms Halogen atoms or nitro radicals Oxygen atoms attached in position 2 or 4 only one oxygen atom which is attached in position 4 attached in position 8 with halogen atoms or nitro radicals in position 5, 6 or 7 Metal salts; Chelates Setters

215/40	attached in position 8
215/42	attached in position 4
215/44	with aryl radicals attached to said nitrogen atoms
215/46	••••• with hydrocarbon radicals, substituted by nitrogen atoms, attached to said nitrogen atoms
215/48	• • Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
215/50	• • • • attached in position 4
215/52	••••• with aryl radicals attached in position 2
215/54	attached in position 3
215/56	with oxygen atoms in position 4
215/58	• with hetero atoms directly attached to the ring nitrogen atom
215/60	N-oxides
217/00	Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
217/02	• with only hydrogen atoms or radicals containing
	only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines
217/04	 with hydrocarbon or substituted hydrocarbon radicals attached to the ring nitrogen atom
217/06	 with the ring nitrogen atom acylated by carboxylic or carbonic acids, or with sulfur or nitrogen analogues thereof, e.g. carbamates
217/08	 with a hetero atom directly attached to the ring nitrogen atom
217/10	. Quaternary compounds
217/12	• with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring
217/14	• • other than aralkyl radicals
217/16	substituted by oxygen atoms
217/18	• • Aralkyl radicals
217/20	 with oxygen atoms directly attached to the aromatic ring of said aralkyl radical, e.g. papaverine
217/22	 with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the nitrogen- containing ring
217/24	• • Oxygen atoms
217/26	• Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
219/00	Heterocyclic compounds containing acridine or
	hydrogenated acridine ring systems
219/02	 with only hydrogen, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
219/04	• with hetero atoms or with carbon atoms having
	three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
219/06	Oxygen atoms
219/08	Nitrogen atoms
219/10	• • • attached in position 9
219/12	•••• Amino-alkylamino radicals attached in position 9
219/14	• with hydrocarbon radicals, substituted by nitrogen atoms, attached to the ring nitrogen atom

219/16	 with acyl radicals, substituted by nitrogen atoms, attached to the ring nitrogen atom
221/00	Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only
	ring hetero atom, not provided for by groups <u>C07D 211/00</u> - <u>C07D 219/00</u>
221/02	. condensed with carbocyclic rings or ring systems
221/04	. Ortho- or peri-condensed ring systems
221/06	Ring systems of three rings
221/08	Aza-anthracenes
221/10	Aza-phenanthrenes
221/12	• • • • Phenanthridines
221/14	Aza-phenalenes, e.g. 1,8-naphthalimide
221/16	• • • containing carbocyclic rings other than six- membered
221/18	Ring systems of four or more rings
221/20	Spiro-condensed ring systems
221/22	• Bridged ring systems
221/24	Camphidines
221/26 221/28	Benzomorphans
	Morphinans
223/00	Heterocyclic compounds containing seven- membered rings having one nitrogen atom as the only ring hetero atom
	NOTE
	Hexamethylene imines or 3-azabicyclo [3.2.2]
	nonanes, having only hydrogen atoms attached
	to the ring carbon atoms, are classified in group <u>C07D 295/00</u> .
223/02	• not condensed with other rings
223/04	• • with only hydrogen atoms, halogen atoms,
	hydrocarbon or substituted hydrocarbon radicals,
222/06	directly attached to ring carbon atoms
223/06	• with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one
	bond to halogen, e.g. ester or nitrile radicals,
	directly attached to ring carbon atoms (halogen
223/08	Oxygen atoms
223/10	• • • • • • • • • • • • • • • • • • •
223/12	Nitrogen atoms not forming part of a nitro
	radical
223/14	condensed with carbocyclic rings or ring systems
223/16	Benzazepines; Hydrogenated benzazepines
223/18	• Dibenzazepines; Hydrogenated dibenzazepines
223/20	Dibenz [b, e] azepines; Hydrogenated dibenz [b, e] azepines
223/22	 Dibenz [b, f] azepines; Hydrogenated dibenz [b, f] azepines
223/24	with hydrocarbon radicals, substituted by nitrogen atoms, attached to the ring nitrogen
	atom
223/26	having a double bond between positions 10 and 11
223/28	• • • • having a single bond between positions 10 and 11
223/30	with hetero atoms directly attached to the
	ring nitrogen atom
223/32	containing carbocyclic rings other than six- membered

225/00	Heterocyclic compounds containing rings of more than seven members having one nitrogen atom as the only ring hetero atom
	NOTE
	Polymethyleneimines with at least five ring members and having only hydrogen atoms attached to the ring carbon atoms are classified in group C07D 295/00.
225/02 225/04 225/06 225/08	 not condensed with other rings condensed with carbocyclic rings or ring systems condensed with one six-membered ring condensed with two six-membered rings
227/00	Heterocyclic compounds containing rings having one nitrogen atom as the only ring hetero atom, according to more than one of groups <u>C07D 203/00</u> - <u>C07D 225/00</u>
	NOTE
	Polymethyleneimines with at least five ring members and having only hydrogen atoms attached to the ring carbon atoms are classified in group <u>C07D 295/00</u> .
227/02	• with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
227/04	• • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to ring carbon atoms
227/06	• • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
227/08	Oxygen atoms
227/087	One doubly-bound oxygen atom in position 2, e.g. lactams
227/093	Two doubly-bound oxygen atoms attached to the carbon atoms adjacent to the ring nitrogen atom, e.g. dicarboxylic acid imides
227/10	Nitrogen atoms not forming part of a nitro radical
227/12	• with hetero atoms directly attached to the ring nitrogen atom
229/00	Heterocyclic compounds containing rings of less than five members having two nitrogen atoms as the only ring hetero atoms
229/02	• containing three-membered rings
231/00	Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
231/02	• not condensed with other rings
231/04	• having no double bonds between ring members or between ring members and non-ring members
231/06	• having one double bond between ring members or between a ring member and a non-ring member
231/08	• • • with oxygen or sulfur atoms directly attached to ring carbon atoms
231/10	 having two or three double bonds between ring members or between ring members and non-ring members
231/12	 with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms

021/14	with between examples and the early of the best of
231/14	with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile
	radicals, directly attached to ring carbon atoms
231/16	Halogen atoms or nitro radicals
231/18	One oxygen or sulfur atom
231/20	One oxygen atom attached in position 3 or
231/20	5
231/22	••••• with aryl radicals attached to ring
	nitrogen atoms
231/24	having sulfone or sulfonic acid
	radicals in the molecule
231/26	1-Phenyl-3-methyl-5- pyrazolones,
	unsubstituted or substituted on the
	phenyl ring
231/28	Two oxygen or sulfur atoms
231/30	attached in positions 3 and 5
231/32	Oxygen atoms
231/34	••••••••••••••••••••••••••••••••••••••
	containing only hydrogen and carbon
021/26	atoms, attached in position 4
231/36	•••••• with hydrocarbon radicals, substituted by hetero atoms, attached in position
	4
231/38	•••• Nitrogen atoms (nitro radicals <u>C07D 231/16</u>)
231/40	Acylated on said nitrogen atom
231/42	Benzene-sulfonamido pyrazoles
231/44	Oxygen and nitrogen or sulfur and nitrogen
	atoms
231/46	Oxygen atom in position 3 or 5 and
	nitrogen atom in position 4
231/48	••••• with hydrocarbon radicals attached to
	said nitrogen atom
231/50	Acylated on said nitrogen atom
231/52	Oxygen atom in position 3 and nitrogen atom in position 5, or <u>vice versa</u>
231/54	 condensed with carbocyclic rings or ring systems
231/54	Benzopyrazoles; Hydrogenated benzopyrazoles
000	
233/00	Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed
	with other rings
233/02	• having no double bonds between ring members or
	between ring members and non-ring members
233/04	. having one double bond between ring members or
	between a ring member and a non-ring member
233/06	with only hydrogen atoms or radicals containing
	only hydrogen and carbon atoms, directly
	attached to ring carbon atoms
233/08	• • • with alkyl radicals, containing more than four
	carbon atoms, directly attached to ring carbon atoms
233/10	
255/10	•••• with only hydrogen atoms or radicals containing only hydrogen and carbon atoms,
	directly attached to ring nitrogen atoms
233/12	• • • • with substituted hydrocarbon radicals
	attached to ring nitrogen atoms
233/14	Radicals substituted by oxygen atoms
233/16	Radicals substituted by nitrogen atoms
233/18	Radicals substituted by carbon atoms
	having three bonds to hetero atoms with at
	the most one bond to halogen, e.g. ester or
	nitrile radicals

233/20	• • with substituted hydrocarbon radicals, directly
	attached to ring carbon atoms
233/22	Radicals substituted by oxygen atoms
233/24	Radicals substituted by nitrogen atoms not
	forming part of a nitro radical
233/26	Radicals substituted by carbon atoms having
	three bonds to hetero atoms
233/28	• with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one
	bond to halogen, e.g. ester or nitrile radicals,
	directly attached to ring carbon atoms
233/30	Oxygen or sulfur atoms
233/30	One oxygen atom
233/32	Ethylene-urea
233/36	••••••••••••••••••••••••••••••••••••••
233/30	nitrogen atoms, attached to ring nitrogen
	atoms
233/38	with acyl radicals or hetero atoms directly
	attached to ring nitrogen atoms
233/40	Two or more oxygen atoms
233/42	Sulfur atoms
233/44	Nitrogen atoms not forming part of a nitro
	radical
233/46	with only hydrogen atoms attached to said
	nitrogen atoms
233/48	• • • • with acyclic hydrocarbon or substituted
	acyclic hydrocarbon radicals, attached to said
233/50	nitrogen atoms with carbocyclic radicals directly attached to
233/30	said nitrogen atoms
233/52	• • • • with hetero atoms directly attached to said
200/02	nitrogen atoms
233/54	• having two double bonds between ring members or
	between ring members and non-ring members
233/56	• • with only hydrogen atoms or radicals containing
	only hydrogen and carbon atoms, attached to ring
222/50	carbon atoms
233/58	• • • with only hydrogen atoms or radicals containing only hydrogen and carbon atoms,
	attached to ring nitrogen atoms
233/60	• • • with hydrocarbon radicals, substituted by
233/00	oxygen or sulfur atoms, attached to ring
	nitrogen atoms
233/61	• • • with hydrocarbon radicals, substituted by
	nitrogen atoms not forming part of a nitro
	radical, attached to ring nitrogen atoms
233/62	• • • with triarylmethyl radicals attached to ring
	nitrogen atoms
233/64	• with substituted hydrocarbon radicals attached to
222/66	ring carbon atoms, e.g. histidine • with hetero atoms or with carbon atoms having
233/66	three bonds to hetero atoms with at the most one
	bond to halogen, e.g. ester or nitrile radicals,
	directly attached to ring carbon atoms
233/68	Halogen atoms
233/70	One oxygen atom
233/72	Two oxygen atoms, e.g. hydantoin
233/74	• • • • with only hydrogen atoms or radicals
	containing only hydrogen and carbon atoms,
000 /7 -	attached to other ring members
122/16	-
233/76	with substituted hydrocarbon radicals
233/78	-

233/80	•••• with hetero atoms or acyl radicals directly attached to ring nitrogen atoms
233/82	• • • • Halogen atoms
233/84	Sulfur atoms
233/86	Oxygen and sulfur atoms, e.g. thiohydantoin
233/88	Nitrogen atoms, e.g. allantoin
233/90	Carbon atoms having three bonds to hetero
	atoms with at the most one bond to halogen,
	e.g. ester or nitrile radicals
233/91	Nitro radicals
233/92	• • • • attached in position 4 or 5
233/93	•••• with hydrocarbon radicals, substituted
	by halogen atoms, attached to other ring
	members
233/94	• • • • with hydrocarbon radicals, substituted by
	oxygen or sulfur atoms, attached to other
	ring members
233/95	••••• with hydrocarbon radicals, substituted
	by nitrogen atoms, attached to other ring
000/06	members
233/96	• having three double bonds between ring members or
	between ring members and non-ring members
235/00	Heterocyclic compounds containing 1,3-diazole or
	hydrogenated 1,3-diazole rings, condensed with
	other rings
235/02	• condensed with carbocyclic rings or ring systems
235/04	Benzimidazoles; Hydrogenated benzimidazoles
235/06	• • • with only hydrogen atoms, hydrocarbon or
	substituted hydrocarbon radicals, directly
235/08	attached in position 2 Radicals containing only hydrogen and
233/08	Radicals containing only hydrogen and carbon atoms
235/10	• • • Radicals substituted by halogen atoms or
255/10	nitro radicals
235/12	• • • Radicals substituted by oxygen atoms
235/12	Radicals substituted by nitrogen atoms (by
	nitro radicals <u>C07D 235/10</u>)
235/16	Radicals substituted by carbon atoms having
	three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile
	radicals
235/18	• • • with any radicals directly attached in position 2
235/20	Two benzimidazolyl-2 radicals linked together
	directly or via a hydrocarbon or substituted
	hydrocarbon radical
235/22	• • • with hetero atoms directly attached to
	ring nitrogen atoms (<u>C07D 235/10</u> takes
225/24	precedence)
235/24	• • • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile
	radicals, directly attached in position 2
235/26	Oxygen atoms
235/28	Sulfur atoms
235/30	Nitrogen atoms not forming part of a nitro
	radical
235/32	Benzimidazole-2-carbamic acids,
	unsubstituted or substituted; Esters
	thereof; Thio-analogues thereof
237/00	Heterocyclic compounds containing 1,2-diazine or
	hydrogenated 1,2-diazine rings
237/02	• not condensed with other rings

237/04	• having less than three double bonds between ring
	members or between ring members and non-ring members
237/06	• having three double bonds between ring members or between ring members and non-ring members
237/08	• • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly
	attached to ring carbon atoms
237/10	with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
237/12	Halogen atoms or nitro radicals
237/14	Oxygen atoms
237/16	Two oxygen atoms
237/18	Sulfur atoms
237/20	 Nitrogen atoms (nitro radicals <u>C07D 237/12</u>)
237/22	Nitrogen and oxygen atoms
237/24	Carbon atoms having three bonds to hetero
	atoms with at the most one bond to halogen
237/26	• condensed with carbocyclic rings or ring systems
237/28	Cinnolines
237/30	• Phthalazines
237/32	• • • with oxygen atoms directly attached to carbon atoms of the nitrogen-containing ring
237/34	with nitrogen atoms directly attached to carbon
	atoms of the nitrogen-containing ring, e.g. hydrazine radicals
237/36	Benzo-cinnolines
239/00	Heterocyclic compounds containing 1,3-diazine or
	hydrogenated 1,3-diazine rings
239/02	. not condensed with other rings
239/02 239/04	having no double bonds between ring members or
	 having no double bonds between ring members or between ring members and non-ring members having one double bond between ring members or
239/04 239/06	 having no double bonds between ring members or between ring members and non-ring members having one double bond between ring members or between a ring member and a non-ring member
239/04 239/06 239/08	 having no double bonds between ring members or between ring members and non-ring members having one double bond between ring members or between a ring member and a non-ring member with hetero atoms directly attached in position 2
239/04 239/06 239/08 239/10	 having no double bonds between ring members or between ring members and non-ring members having one double bond between ring members or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms
239/04 239/06 239/08	 having no double bonds between ring members or between ring members and non-ring members having one double bond between ring members or between a ring member and a non-ring member with hetero atoms directly attached in position 2
239/04 239/06 239/08 239/10	 having no double bonds between ring members or between ring members and non-ring members having one double bond between ring members or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms Nitrogen atoms not forming part of a nitro radical with only hydrogen atoms, hydrocarbon or
239/04 239/06 239/08 239/10 239/12	 having no double bonds between ring members or between ring members and non-ring members having one double bond between ring members or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms Nitrogen atoms not forming part of a nitro radical with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached
239/04 239/06 239/08 239/10 239/12 239/14	 having no double bonds between ring members or between ring members and non-ring members or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms Nitrogen atoms not forming part of a nitro radical • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to said nitrogen atoms
239/04 239/06 239/08 239/10 239/12 239/14 239/16	 having no double bonds between ring members or between ring members and non-ring members or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms Nitrogen atoms not forming part of a nitro radical with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to said nitrogen atoms acylated on said nitrogen atoms
239/04 239/06 239/08 239/10 239/12 239/14	 having no double bonds between ring members or between ring members and non-ring members or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms Nitrogen atoms not forming part of a nitro radical • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to said nitrogen atoms
239/04 239/06 239/08 239/10 239/12 239/14 239/16	 having no double bonds between ring members or between ring members and non-ring members or between a ring member and a non-ring member or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms Nitrogen atoms not forming part of a nitro radical with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to said nitrogen atoms acylated on said nitrogen atoms with hetero atoms attached to said nitrogen atoms, except nitro radicals, e.g. hydrazine radicals having two double bonds between ring members
239/04 239/06 239/08 239/10 239/12 239/14 239/16 239/18	 having no double bonds between ring members or between ring members and non-ring members or between a ring member and a non-ring member or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms Nitrogen atoms not forming part of a nitro radical • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to said nitrogen atoms • • • with hetero atoms attached to said nitrogen atoms • • • with hetero atoms attached to said nitrogen atoms • • • with hetero atoms attached to said nitrogen atoms • • • with hetero atoms attached to said nitrogen atoms, except nitro radicals, e.g. hydrazine radicals having two double bonds between ring members or between ring members and non-ring members • with hetero atoms directly attached to ring
239/04 239/06 239/08 239/10 239/12 239/14 239/16 239/18 239/20 239/22	 having no double bonds between ring members or between ring members and non-ring members or between a ring member and a non-ring member or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms Nitrogen atoms not forming part of a nitro radical • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to said nitrogen atoms • • acylated on said nitrogen atoms • • with hetero atoms attached to said nitrogen atoms • • • with hetero atoms attached to said nitrogen atoms • • • with hetero atoms attached to said nitrogen atoms • • • with hetero atoms attached to said nitrogen atoms • • • • with hetero atoms attached to said nitrogen atoms, except nitro radicals, e.g. hydrazine radicals having two double bonds between ring members • with hetero atoms directly attached to ring carbon atoms
239/04 239/06 239/08 239/10 239/12 239/14 239/16 239/18 239/20	 having no double bonds between ring members or between ring members and non-ring members or between a ring member and a non-ring member or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms Nitrogen atoms not forming part of a nitro radical • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to said nitrogen atoms • • • with hetero atoms attached to said nitrogen atoms • • • with hetero atoms attached to said nitrogen atoms • • • with hetero atoms attached to said nitrogen atoms • • • with hetero atoms attached to said nitrogen atoms, except nitro radicals, e.g. hydrazine radicals having two double bonds between ring members or between ring members and non-ring members • with hetero atoms directly attached to ring
239/04 239/06 239/08 239/10 239/12 239/14 239/16 239/18 239/20 239/22	 having no double bonds between ring members or between ring members and non-ring members or between a ring member and a non-ring member or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms Nitrogen atoms not forming part of a nitro radical • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to said nitrogen atoms • • acylated on said nitrogen atoms • • with hetero atoms attached to said nitrogen atoms • • • with hetero atoms attached to said nitrogen atoms • • • with hetero atoms attached to said nitrogen atoms • • • with hetero atoms attached to said nitrogen atoms, except nitro radicals, e.g. hydrazine radicals having two double bonds between ring members • with hetero atoms directly attached to ring carbon atoms • having three or more double bonds between ring members or between ring members and non-ring members
239/04 239/06 239/08 239/10 239/12 239/14 239/16 239/18 239/20 239/20 239/22 239/24	 having no double bonds between ring members or between ring members and non-ring members or between a ring member and a non-ring member or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms Nitrogen atoms not forming part of a nitro radical v with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to said nitrogen atoms acylated on said nitrogen atoms with hetero atoms attached to said nitrogen atoms, except nitro radicals, e.g. hydrazine radicals having two double bonds between ring members with hetero atoms directly attached to ring carbon atoms having three or more double bonds between ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, e.g. hydrazine radicals
239/04 239/06 239/08 239/10 239/12 239/14 239/16 239/18 239/20 239/20 239/22 239/24	 having no double bonds between ring members or between ring members and non-ring members or between a ring member and a non-ring member or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms Nitrogen atoms not forming part of a nitro radical vith only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to said nitrogen atoms acylated on said nitrogen atoms with hetero atoms attached to said nitrogen atoms, except nitro radicals, e.g. hydrazine radicals having two double bonds between ring members with hetero atoms directly attached to ring carbon atoms with hetero atoms directly attached to ring members or between ring members and non-ring members with hetero atoms directly attached to ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with hetero atoms or with carbon atoms having
239/04 239/06 239/08 239/10 239/12 239/14 239/16 239/18 239/20 239/20 239/22 239/24 239/26	 having no double bonds between ring members or between ring members and non-ring members or between a ring member and a non-ring member or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms Nitrogen atoms not forming part of a nitro radical with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to said nitrogen atoms acylated on said nitrogen atoms with hetero atoms attached to said nitrogen atoms, except nitro radicals, e.g. hydrazine radicals having two double bonds between ring members with hetero atoms directly attached to ring carbon atoms with hetero atoms directly attached to ring members or between ring members and non-ring members with hetero atoms directly attached to ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, e.g. hydrazine radicals
239/04 239/06 239/08 239/10 239/12 239/14 239/16 239/18 239/20 239/20 239/22 239/24 239/26	 having no double bonds between ring members or between ring members and non-ring members or between a ring member and a non-ring member or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms Nitrogen atoms not forming part of a nitro radical vith only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to said nitrogen atoms acylated on said nitrogen atoms with hetero atoms attached to said nitrogen atoms, except nitro radicals, e.g. hydrazine radicals having two double bonds between ring members with hetero atoms directly attached to ring carbon atoms with hetero atoms directly attached to ring members or between ring members and non-ring members with hetero atoms directly attached to ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with hetero atoms or with carbon atoms having
239/04 239/06 239/08 239/10 239/12 239/14 239/16 239/18 239/20 239/22 239/24 239/24 239/26 239/28	 having no double bonds between ring members or between ring members and non-ring members or between a ring member and a non-ring member or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms Nitrogen atoms not forming part of a nitro radical v i with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to said nitrogen atoms acylated on said nitrogen atoms with hetero atoms attached to said nitrogen atoms, except nitro radicals, e.g. hydrazine radicals having two double bonds between ring members with hetero atoms directly attached to ring carbon atoms with hetero atoms directly attached to ring members or between ring members and non-ring members with hetero atoms directly attached to ring members or between ring members and non-ring members with hetero atoms directly attached to ring carbon atoms with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with only hydrogen atoms with at the most one bond to halogen, directly attached to ring carbon atoms
239/04 239/06 239/08 239/10 239/12 239/14 239/16 239/18 239/20 239/20 239/22 239/24 239/26	 having no double bonds between ring members or between ring members and non-ring members or between a ring member and a non-ring member or between a ring member and a non-ring member with hetero atoms directly attached in position 2 Oxygen or sulfur atoms Nitrogen atoms not forming part of a nitro radical with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to said nitrogen atoms acylated on said nitrogen atoms with hetero atoms attached to said nitrogen atoms, except nitro radicals, e.g. hydrazine radicals having two double bonds between ring members with hetero atoms directly attached to ring carbon atoms with hetero atoms directly attached to ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, e.g. hydrazine radicals having two double bonds between ring members with hetero atoms directly attached to ring carbon atoms having three or more double bonds between ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with only hydrogen atoms with at the most one bond to halogen, directly attached to ring

/	
239/32	One oxygen, sulfur or nitrogen atom
239/34	One oxygen atom
239/36	as doubly bound oxygen atom or as
220/20	unsubstituted hydroxy radical
239/38	One sulfur atom
239/40	as doubly bound sulfur atom or as unsubstituted mercapto radical
239/42	One nitrogen atom (nitro radicals
	<u>C07D 239/30</u>)
239/46	Two or more oxygen, sulphur or nitrogen
	atoms
239/47	One nitrogen atom and one oxygen or
	sulfur atom, e.g. cytosine
239/48	Two nitrogen atoms
239/49	••••• with an aralkyl radical, or substituted
	aralkyl radical, attached in position 5,
	e.g. trimethoprim
239/50	Three nitrogen atoms
239/52	Two oxygen atoms
239/54	••••• as doubly bound oxygen atoms or as unsubstituted hydroxy radicals
239/545	••••••• with other hetero atoms or with
200/010	carbon atoms having three bonds to
	hetero atoms with at the most one
	bond to halogen, directly attached to
	ring carbon atoms
239/553	••••••••••••••••••••••••••••••••••••••
	directly attached to ring carbon
	atoms, e.g. fluorouracil
239/557	••••••••••••••••••••••••••••••••••••••
	bonds to hetero atoms with at the
	most one bond to halogen, directly
	attached to ring carbon atoms, e.g.
	orotic acid
239/56	One oxygen atom and one sulfur atom
239/58	Two sulfur atoms
239/60	Three or more oxygen or sulfur atoms
239/62	Barbituric acids
239/64	Salts of organic bases; Organic double
	compounds
239/66	Thiobarbituric acids
239/68	Salts of organic bases; Organic double
220/00	compounds Demonscriptionamida purimidinas
239/69	• • • Benzenesulfonamido-pyrimidines
239/70	• condensed with carbocyclic rings or ring systems
239/72	. Quinazolines; Hydrogenated quinazolines
239/74	• • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to
	ring carbon atoms of the hetero ring
239/76	• • • • N-oxides
239/78	 N-oxides with hetero atoms directly attached in position
239/10	2
239/80	Oxygen atoms
239/80	••••••••••••••••••••••••••••••••••••••
239/82	Nitrogen atoms
239/86	• • • • • • • • • • • • • • • • • • •
	4
239/88	Oxygen atoms
239/90	••••••••••••••••••••••••••••••••••••••
	or 3
239/91	••••• with aryl or aralkyl radicals attached in
	position 2 or 3
239/92	••••• with hetero atoms directly attached to
	nitrogen atoms of the hetero ring
	-

239/93	Sulfur atoms
239/94	Nitrogen atoms
239/95	• • • with hetero atoms directly attached in positions
	2 and 4
239/96	Two oxygen atoms
241/00	Heterocyclic compounds containing 1,4-diazine or
	hydrogenated 1,4-diazine rings
	<u>NOTE</u>
	Piperazines with only hydrogen atoms directly
	attached to ring carbon atoms are classified in
	group C07D 295/00.
	5.04p <u>0072 200700</u> .
241/02	 not condensed with other rings
241/04	having no double bonds between ring members or
	between ring members and non-ring members
241/06	• having one or two double bonds between ring
	members or between ring members and non-ring
2 41 /00	members
241/08	• • • with oxygen atoms directly attached to ring
241/10	carbon atoms
241/10	having three double bonds between ring members or between ring members and non-ring members
241/12	• • • with only hydrogen atoms, hydrocarbon or
241/12	substituted hydrocarbon radicals, directly
	attached to ring carbon atoms
241/14	with hetero atoms or with carbon atoms having
	three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile
	radicals, directly attached to ring carbon atoms
241/16	Halogen atoms; Nitro radicals
241/18	Oxygen or sulfur atoms
241/20	Nitrogen atoms (nitro radicals <u>C07D 241/16</u>)
241/22	Benzenesulfonamido pyrazines
241/24	Carbon atoms having three bonds to hetero
	atoms with at the most one bond to halogen,
241/26	e.g. ester or nitrile radicals
241/26	• • • • with nitrogen atoms directly attached to
241/20	ring carbon atoms
241/28	atoms have double bonds to oxygen.
	sulfur or nitrogen atoms
241/30	• • • • • • in which said hetero-bound carbon
241/30	atoms are part of a substructure —
	C(=X)— X — $C(=X)$ — X — in which
	X is an oxygen or sulphur atom or an
	imino radical, e.g. imidoylguanidines
241/32	(Amino-pyrazinoyl) guanidines
241/34	(Amino-pyrazine carbonamido)
	guanidines
241/36	• condensed with carbocyclic rings or ring systems
241/38	• with only hydrogen or carbon atoms directly
241/40	attached to the ring nitrogen atoms
241/40	• • Benzopyrazines
241/42	•••• with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly
	attached to carbon atoms of the hetero ring
241/44	• • • • with hetero atoms or with carbon atoms
	having three bonds to hetero atoms with at
	the most one bond to halogen, e.g. ester or
	nitrile radicals, directly attached to carbon
	atoms of the hetero ring
241/46	Phenazines

241/48	•••• with hydrocarbon radicals, substituted by nitrogen atoms, directly attached to the ring nitrogen atoms
241/50	• • with hetero atoms directly attached to ring
	nitrogen atoms
241/52	Oxygen atoms
241/54	Nitrogen atoms
243/00	Heterocyclic compounds containing seven- membered rings having two nitrogen atoms as the
	only ring hetero atoms
243/02	• having the nitrogen atoms in positions 1 and 2
243/04	• having the nitrogen atoms in positions 1 and 3
243/06	• having the nitrogen atoms in positions 1 and 4
243/08	• • not condensed with other rings
243/10	condensed with carbocyclic rings or ring systems
243/12	1,5-Benzodiazepines; Hydrogenated 1,5-
	benzodiazepines
243/14	1,4-Benzodiazepines; Hydrogenated 1,4-
0.42/1.6	benzodiazepines
243/16	substituted in position 5 by aryl radicals
243/18	substituted in position 2 by nitrogen, oxygen or sulfur atoms
243/20	Nitrogen atoms
243/20	Sulfur atoms
243/24	Oxygen atoms
243/26	••••••••••••••••••••••••••••••••••••••
	containing the benzodiazepine
	skeleton
243/28	••••• Preparation including building-up
	the benzodiazepine skeleton from
a (a (a)	compounds containing no hetero rings
243/30	Preparation including building-up
	the benzodiazepine skeleton from compounds already containing hetero
	rings
243/32	••••••••••••••••••••••••••••••••••••••
	hydrogenated phthalimide ring
	system
243/34	••••••••••••••••••••••••••••••••••••••
	hydrogenated quinazoline ring
242/26	system
243/36	••••••••••••••••••••••••••••••••••••••
243/38	[b, e]- or [b, f]-condensed with six-membered
245/50	rings
245/00	Heterocyclic compounds containing rings of more
243/00	than seven members having two nitrogen atoms as
	the only ring hetero atoms
245/02	• not condensed with other rings
245/04	• condensed with carbocyclic rings or ring systems
245/06	condensed with one six-membered ring
247/00	Heterocyclic compounds containing rings having
	two nitrogen atoms as the only ring hetero
	atoms, according to more than one of groups
	<u>C07D 229/00</u> - <u>C07D 245/00</u>
247/02	• having the nitrogen atoms in positions 1 and 3
249/00	Heterocyclic compounds containing five-
,, 00	membered rings having three nitrogen atoms as
	the only ring hetero atoms
249/02	• not condensed with other rings
249/04	. 1,2,3-Triazoles; Hydrogenated 1,2,3-triazoles

249/06	with aryl radicals directly attached to ring
2 1 0 /0 0	atoms
249/08	• 1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
249/10	• • • with hetero atoms or with carbon atoms having three bonds to betero atoms with at the most
	one bond to halogen, e.g. ester or nitrile
	radicals, directly attached to ring carbon atoms
249/12	Oxygen or sulfur atoms
249/14	Nitrogen atoms
249/16	• condensed with carbocyclic rings or ring systems
249/18	. Benzotriazoles
249/20	with aryl radicals directly attached in position 2
249/22	Naphthotriazoles
249/24	• • • with stilbene radicals directly attached in
	position 2
251/00	Heterocyclic compounds containing 1,3,5-triazine
	rings
251/02	 not condensed with other rings
251/04	having no double bonds between ring members or
	between ring members and non-ring members
251/06	• • • with hetero atoms directly attached to ring
251/08	nitrogen atoms
231/08	. having one double bond between ring members or between a ring member and a non-ring member
251/10	 having two double bonds between ring members
201/10	or between ring members and non-ring members
251/12	• • having three double bonds between ring members
	or between ring members and non-ring members
251/14	• • • with hydrogen or carbon atoms directly
	attached to at least one ring carbon atom
251/16	• • • to only one ring carbon atom
251/18	••••• with nitrogen atoms directly attached to the two other ring carbon atoms, e.g.
	guanamines
251/20	• • • • with no nitrogen atoms directly attached to
	a ring carbon atom
251/22	to two ring carbon atoms
251/24	• • • to three ring carbon atoms
251/26	with only hetero atoms directly attached to ring
251/20	carbon atoms
251/28	• • • Only halogen atoms, e.g. cyanuric chloride
251/30 251/32	Only oxygen atoms Only oxygen acid; Isocyanuric acid
251/32 251/34	Cyanuric acid; Isocyanuric acid Cyanuric or isocyanuric esters
251/34	••••••••••••••••••••••••••••••••••••••
201/00	ring nitrogen atoms
251/38	Sulfur atoms
251/40	Nitrogen atoms
251/42	One nitrogen atom
251/44	with halogen atoms attached to the two
	other ring carbon atoms
251/46	••••• with oxygen or sulfur atoms attached to
251/49	the two other ring carbon atoms
251/48 251/50	Two nitrogen atoms with a halogen atom attached to the third
231/30	ring carbon atom
251/52	• • • • • • with an oxygen or sulfur atom attached
	to the third ring carbon atom
251/54	Three nitrogen atoms
251/56	Preparation of melamine
251/58	••••• from cyanamide, dicyanamide or
	calcium cyanamide

251/60	••••••••••••••••••••••••••••••••••••••
251/62	••••••••••••••••••••••••••••••••••••••
251/62	Condensation products of melamine
	with aldehydes; Derivatives thereof
	(polycondensation products <u>C08G</u>)
251/66	Derivatives of melamine in which a
	hetero atom is directly attached to a
	nitrogen atom of melamine
251/68	••••• Triazinylamino stilbenes
251/70	Other substituted melamines
251/72	· condensed with carbocyclic rings or ring systems
253/00	Heterocyclic compounds containing six-membered
	rings having three nitrogen atoms as the only
	ring hetero atoms, not provided for by group
	<u>C07D 251/00</u>
253/02	• not condensed with other rings
253/04	1,2,3-Triazines
253/06	1,2,4-Triazines
253/065	• • • having three double bonds between ring
	members or between ring members and non-
252/07	ring members
253/07	• • • • with hetero atoms, or with carbon atoms having three bonds to hetero atoms with
	at the most one bond to halogen, e.g. ester
	or nitrile radicals, directly attached to ring
	carbon atoms
253/075	Two hetero atoms, in positions 3 and 5
253/08	• condensed with carbocyclic rings or ring systems
253/10	• Condensed 1,2,4-triazines; Hydrogenated
	condensed 1,2,4-triazines
255/00	Heterocyclic compounds containing rings
	having three nitrogen atoms as the only ring
	hetero atoms, not provided for by groups
255/02	<u>C07D 249/00</u> - <u>C07D 253/00</u>
255/02	• not condensed with other rings
255/04	condensed with carbocyclic rings or ring systems
257/00	Heterocyclic compounds containing rings having
257/02	four nitrogen atoms as the only ring hetero atoms
257/02	• not condensed with other rings
257/04	• Five-membered rings
257/06	• • • with nitrogen atoms directly attached to the ring carbon atom
257/08	• Six-membered rings
257/10	• condensed with carbocyclic rings or ring systems
257/12	• Six-membered rings having four nitrogen atoms
259/00	Heterocyclic compounds containing rings having
	more than four nitrogen atoms as the only ring
	hetero atoms
II	
<u>ring hetero a</u>	<u>compounds having nitrogen and oxygen as the only</u> toms

261/00	Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
261/02	• not condensed with other rings
261/04	• having one double bond between ring members or between a ring member and a non-ring member
261/06	• having two or more double bonds between ring members or between ring members and non-ring members

261/08	• • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
261/10	••• with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
261/12	
	Oxygen atoms
261/14	Nitrogen atoms
261/16	Benzene-sulfonamido isoxazoles
261/18 261/20	 Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen condensed with carbocyclic rings or ring systems
263/00	Heterocyclic compounds containing 1,3-oxazole or
205/00	hydrogenated 1,3-oxazole rings
263/02	 not condensed with other rings
263/04	• having no double bonds between ring members or between ring members and non-ring members
263/06	••• with hydrocarbon radicals, substituted by oxygen atoms, attached to ring carbon atoms
263/08	• having one double bond between ring members or between a ring member and a non-ring member
263/10	 with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
263/12	with radicals containing only hydrogen and carbon atoms
263/14	with radicals substituted by oxygen atoms
263/16	with hetero atoms or with carbon atoms having
	three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
263/18	Oxygen atoms
263/20	••••• attached in position 2
263/22	••••• with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to other ring carbon atoms
263/24	••••• with hydrocarbon radicals, substituted by oxygen atoms, attached to other ring carbon atoms
263/26	••••• with hetero atoms or acyl radicals directly attached to the ring nitrogen atom
263/28	Nitrogen atoms not forming part of a nitro radical
263/30	• having two or three double bonds between ring members or between ring members and non-ring members
263/32	 with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
263/34	• • • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
263/36	One oxygen atom
263/38	attached in position 2
263/40	attached in position 4
263/42	•••• attached in position 5
263/44	• • • • Two oxygen atoms
263/46	Sulfur atoms

263/48	Nitrogen atoms not forming part of a nitro radical	20 20
263/50	Benzene-sulfonamido oxazoles	20
263/52	• condensed with carbocyclic rings or ring systems	26
263/54	. Benzoxazoles; Hydrogenated benzoxazoles	26
263/56	with only hydrogen atoms, hydrocarbon or	20
	substituted hydrocarbon radicals, directly	20
A 40 / F =	attached in position 2	20
263/57	Aryl or substituted aryl radicals	20
263/58	• • • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2	20
263/60	. Naphthoxazoles; Hydrogenated naphthoxazoles	20
263/62	• having two or more ring systems containing condensed 1,3-oxazole rings	27
263/64	• • I linked in positions 2 and 2' by chains containing six-membered aromatic rings or ring systems containing such rings	27 27
265/00	Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms	27
		27
	NOTE	
	Morpholines having only hydrogen atoms attached to the ring carbon atoms are classified in group C07D 295/00.	27
265/02	• 1,2-Oxazines; Hydrogenated 1,2-oxazines	27
265/02	 1,2-Oxazines; Hydrogenated 1,2-Oxazines 1,3-Oxazines; Hydrogenated 1,3-oxazines 	
265/04	 not condensed with other rings 	27
265/08	 howing one double bond between ring members 	27
200,00	or between a ring member and a non-ring member	2.
265/10	• • • with oxygen atoms directly attached to ring carbon atoms	27
265/12	condensed with carbocyclic rings or ring systems	27
265/14	condensed with one six-membered ring	
265/16	with only hydrogen or carbon atoms directly attached in positions 2 and 4	
265/18	with hetero atoms directly attached in	27
265/20	position 2	27
265/20	with hetero atoms directly attached in position 4	27
265/22	Oxygen atoms	27
265/22	••••••••••••••••••••••••••••••••••••••	27
	positions 2 and 4	
265/26	Two oxygen atoms, e.g. isatoic anhydride	Hete
265/28	. 1,4-Oxazines; Hydrogenated 1,4-oxazines	ring
265/30	not condensed with other rings	
265/32	• • • with oxygen atoms directly attached to ring carbon atoms	27
265/33	• • • • Two oxygen atoms, in positions 3 and 5	27
265/34	condensed with carbocyclic rings	27
265/36	condensed with one six-membered ring	
265/38	[b, e]-condensed with two six-membered rings	
267/00	Heterocyclic compounds containing rings of more than six members having one nitrogen atom and one oxygen atom as the only ring hetero atoms	27 27
267/02	• Seven-membered rings	
267/02	 beven-membered migs having the hetero atoms in positions 1 and 2 	27
267/06	 having the hetero atoms in positions 1 and 2 having the hetero atoms in positions 1 and 3 	
267/08	 having the hetero atoms in positions 1 and 2 having the hetero atoms in positions 1 and 4 	27

CPC - 2024.01	

67/10	not condensed with other rings
67/12	condensed with carbocyclic rings or ring
	systems
67/14	condensed with one six-membered ring
67/16	condensed with two six-membered rings
67/18	[b, e]-condensed
.67/20 .67/22	[b, f]-condensed . Eight-membered rings
:69/00	Heterocyclic compounds containing rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms according to more than one of groups <u>C07D 261/00</u> - <u>C07D 267/00</u>
.69/02	• having the hetero atoms in positions 1 and 3
271/00	Heterocyclic compounds containing five- membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
271/02	• not condensed with other rings
271/04	• 1,2,3-Oxadiazoles; Hydrogenated 1,2,3- oxadiazoles
271/06	• 1,2,4-Oxadiazoles; Hydrogenated 1,2,4- oxadiazoles
271/07	• • • with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the nitrogen atoms not forming part of a nitro radical
271/08	• 1,2,5-Oxadiazoles; Hydrogenated 1,2,5- oxadiazoles
271/10	• 1,3,4-Oxadiazoles; Hydrogenated 1,3,4- oxadiazoles
271/107	• • • with two aryl or substituted aryl radicals attached in positions 2 and 5
271/113	• • • with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the nitrogen atoms not forming part of a nitro radical
271/12	• condensed with carbocyclic rings or ring systems
273/00	Heterocyclic compounds containing rings having nitrogen and oxygen atoms as the only ring hetero atoms, not provided for by groups <u>C07D 261/00</u> - <u>C07D 271/00</u>
73/01	• having one nitrogen atom
273/02	 having two nitrogen atoms and only one oxygen atom
273/04	Six-membered rings
73/06	Seven-membered rings
273/08	• having two nitrogen atoms and more than one oxygen atom
terocyclic g hetero a	compounds having nitrogen and sulfur as the only itoms
75/00	Heterocyclic compounds containing 1,2-thiazole or

215/00	ficter of year compounds containing 1,2-timazore of
	hydrogenated 1,2-thiazole rings
275/02	 not condensed with other rings
275/03	• with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
275/04	• condensed with carbocyclic rings or ring systems
275/06	• • with hetero atoms directly attached to the ring sulfur atom
277/00	Heterocyclic compounds containing 1,3-thiazole or

hydrogenated 1,3-thiazole rings

. not condensed with other rings

277/04	having no double bonds between ring members or
	between ring members and non-ring members
277/06	with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen,
	e.g. ester or nitrile radicals, directly attached to
	ring carbon atoms
277/08	having one double bond between ring members or
	between a ring member and a non-ring member
277/10	••• with only hydrogen atoms, hydrocarbon or
2///10	substituted hydrocarbon radicals, directly
	attached to ring carbon atoms
277/12	• • • with hetero atoms or with carbon atoms having
	three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile
	radicals, directly attached to ring carbon atoms
277/14	Oxygen atoms
277/16	Sulfur atoms
277/18	Nitrogen atoms
277/20	having two or three double bonds between ring
	members or between ring members and non-ring
	members
277/22	• • • with only hydrogen atoms, hydrocarbon or
	substituted hydrocarbon radicals, directly
	attached to ring carbon atoms
277/24	Radicals substituted by oxygen atoms
277/26	Radicals substituted by sulfur atoms
277/28	Radicals substituted by nitrogen atoms
277/30	Radicals substituted by carbon atoms having
	three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile radicals
277/32	• • • with hetero atoms or with carbon atoms having
211/32	three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile
	radicals, directly attached to ring carbon atoms
277/34	Oxygen atoms
277/36	• • • Sulfur atoms
277/38	Nitrogen atoms
277/40	Unsubstituted amino or imino radicals
277/42	Amino or imino radicals substituted by
	hydrocarbon or substituted hydrocarbon
	radicals
277/44	Acylated amino or imino radicals
277/46	•••• by carboxylic acids, or sulfur or nitrogen
	analogues thereof
277/48	••••• by radicals derived from carbonic acid,
	or sulfur or nitrogen analogues thereof,
A =	e.g. carbonylguanidines
277/50	Nitrogen atoms bound to hetero atoms
277/52	to sulfur atoms, e.g. sulfonamides
277/54	Nitrogen and either oxygen or sulfur atoms
277/56	Carbon atoms having three bonds to hetero
000 (50	atoms with at the most one bond to halogen
277/58	Nitro radicals
277/587	• • • with aliphatic hydrocarbon radicals substituted
	by carbon atoms having three bonds to hetero
	atoms with at the most one bond to halogen,
	e.g. ester or nitrile radicals, directly attached to ring carbon atoms, said aliphatic radicals being
	substituted in the alpha-position to the ring by
	a hetero atom, e.g. + HC-(CH ₂)m-C€ with m S H
	2
	$\geq 0.$ Z being a singly or a doubly bound hetero

>= 0, Z being a singly or a doubly bound hetero atom

277/593	••• Z being doubly bound oxygen or doubly bound nitrogen, which nitrogen is part of a possibly substituted oximino radical
277/60	 condensed with carbocyclic rings or ring systems
277/62	Benzothiazoles
277/64	• • • with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
277/66	with aromatic rings or ring systems directly attached in position 2
277/68	• • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
277/70	Sulfur atoms
277/72	2-Mercaptobenzothiazole
	-
277/74	Sulfur atoms substituted by carbon atoms
277/76	Sulfur atoms attached to a second hetero atom
277/78	to a second sulphur atom
277/80	••••• to a nitrogen atom
277/82	Nitrogen atoms
277/84	Naphthothiazoles
211/04	• • Naphthounazoies
279/00	Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
	NOTE
	Thiomorpholines having only hydrogen atoms
	attached to the ring carbon atoms are classified in
	group <u>C07D 295/00</u> .
279/02	. 1,2-Thiazines; Hydrogenated 1,2-thiazines
279/04	. 1,3-Thiazines; Hydrogenated 1,3-thiazines
279/06	• • not condensed with other rings
279/08	• condensed with carbocyclic rings or ring systems
279/10	• 1,4-Thiazines; Hydrogenated 1,4-thiazines
279/12	• not condensed with other rings
279/12	 condensed with outer rings condensed with carbocyclic rings or ring systems
279/16	condensed with one six-membered ring
279/18	[b, e]-condensed with two six-membered rings
279/20	with hydrogen atoms directly attached to the
	ring nitrogen atom
279/22	with carbon atoms directly attached to the
21)122	ring nitrogen atom
270/24	6 6
279/24	••••• with hydrocarbon radicals, substituted
	by amino radicals, attached to the ring
	nitrogen atom
279/26	••••• without other substituents attached to
	the ring system
279/28	••••••••••••••••••••••••••••••••••••••
219/20	
	ring system
279/30	•••• with acyl radicals attached to the ring
	nitrogen atom
279/32	•••• with hetero atoms directly attached to the
219/32	
	ring nitrogen atom
279/34	with hetero atoms directly attached to the
	ring sulfur atom
279/36	[b, e]-condensed, at least one with a further
2.2750	condensed benzene ring
	contensed benzene ring
281/00	Heterocyclic compounds containing rings of more
	than six members having one nitrogen atom and
001/07	one sulfur atom as the only ring hetero atoms
281/02	Seven-membered rings

281/02 . Seven-membered rings

281/04 281/06	 having the hetero atoms in positions 1 and 4 not condensed with other rings 	285/34	• • 1,3,5-Thiadiazines; Hydrogenated 1,3,5- thiadiazines
281/08	 condensed with carbocyclic rings or ring 	285/36	Seven-membered rings
	systems	285/38	Eight-membered rings
281/10	condensed with one six-membered ring	291/00	Heterocyclic compounds containing rings having
281/12	• • • • condensed with two six-membered rings	2/1/00	nitrogen, oxygen and sulfur atoms as the only ring
281/14	[b, e]-condensed		hetero atoms
281/16	[b, f]-condensed	291/02	• not condensed with other rings
281/18	Eight-membered rings	291/02	 Five-membered rings
202 /00		291/04	Six-membered rings
283/00	Heterocyclic compounds containing rings having	291/00	-
	one nitrogen atom and one sulfur atom as the only	291/08	• condensed with carbocyclic rings or ring systems
202/02	ring hetero atoms, according to more than one of groups <u>C07D 275/00</u> - <u>C07D 281/00</u>	293/00	Heterocyclic compounds containing rings having nitrogen and selenium or nitrogen and tellurium,
283/02	• having the hetero atoms in positions 1 and 3		with or without oxygen or sulfur atoms, as the ring
285/00	Heterocyclic compounds containing rings		hetero atoms
	having nitrogen and sulfur atoms as the only	293/02	• not condensed with other rings
	ring hetero atoms, not provided for by groups	293/04	• • Five-membered rings
	<u>C07D 275/00 - C07D 283/00</u>	293/06	Selenazoles; Hydrogenated selenazoles
285/01	• Five-membered rings	293/08	 Six-membered rings
285/02	Thiadiazoles; Hydrogenated thiadiazoles	293/08	 condensed with carbocyclic rings or ring systems
285/02	Initialization in the second sec	293/10	
285/04	1,2,3-Thiadiazoles; Hydrogenated 1,2,3-	293/12	Selenazoles; Hydrogenated selenazoles
	thiadiazoles	295/00	Heterocyclic compounds containing polymethylene-imine rings with at least five ring
285/08	• • • 1,2,4-Thiadiazoles; Hydrogenated 1,2,4- thiadiazoles		members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only
285/10	• • • 1,2,5-Thiadiazoles; Hydrogenated 1,2,5- thiadiazoles		hydrogen atoms directly attached to the ring carbon atoms
285/12	• • • • 1,3,4-Thiadiazoles; Hydrogenated 1,3,4- thiadiazoles	295/02	 containing only hydrogen and carbon atoms in addition to the ring hetero elements
285/125	with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the	295/023	Preparation; Separation; Stabilisation; Use of additives
	nitrogen atoms not forming part of a nitro radical	295/027	• • containing only one hetero ring
285/13	Oxygen atoms	295/03	with the ring nitrogen atoms directly attached
285/135	Nitrogen atoms		to acyclic carbon atoms
285/14	condensed with carbocyclic rings or ring	295/033	with the ring nitrogen atoms directly attached to carbocyclic rings
285/15	systems Six-membered rings	295/037	• • with quaternary ring nitrogen atoms
		295/04	• with substituted hydrocarbon radicals attached to
285/16	. Thiadiazines; Hydrogenated thiadiazines		ring nitrogen atoms
285/18	• • 1,2,4-Thiadiazines; Hydrogenated 1,2,4-	295/06	• substituted by halogen atoms or nitro radicals
	thiadiazines	295/067	•••• with the ring nitrogen atoms and the
285/20	• • • condensed with carbocyclic rings or ring systems		substituents attached to the same carbon chain, which is not interrupted by carbocyclic rings
285/22	condensed with one six-membered ring	295/073	• • • with the ring nitrogen atoms and the
285/24	••••• with oxygen atoms directly attached to the ring sulfur atom		substituents separated by carbocyclic rings or by carbon chains interrupted by carbocyclic
285/26	substituted in position 6 or 7 by sulfamoyl or substituted sulfamoyl	295/08	rings • substituted by singly bound oxygen or sulfur
	radicals		atoms
285/28	•••••• with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached	295/084	with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by arthogyalia rings.
	in position 3	205/000	which is not interrupted by carbocyclic rings
285/30	••••••••••••••••••••••••••••••••••••••	295/088	• • • to an acyclic saturated chain
	substituted by hetero atoms, attached in position 3	295/092 295/096	 with aromatic radicals attached to the chain with the ring nitrogen atoms and the oxygen
285/32	••••••••••••••••••••••••••••••••••••••		or sulfur atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
	atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in	295/10	• substituted by doubly bound oxygen or sulphur atoms

295/104	• • • with the ring nitrogen atoms and the doubly
	bound oxygen or sulfur atoms attached to the
	same carbon chain, which is not interrupted by
205/100	carbocyclic rings
295/108	to an acyclic saturated chain
295/112	• • • with the ring nitrogen atoms and the doubly
	bound oxygen or sulfur atoms separated
	by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
205/116	
295/116	with the doubly bound oxygen or sulfur atoms directly attached to a carbocyclic ring
205/12	
295/12	substituted by singly or doubly bound nitrogen atoms (nitro radicals C07D 295/06)
295/125	
293/123	• • • with the ring nitrogen atoms and the substituent nitrogen atoms attached to the same carbon
	chain, which is not interrupted by carbocyclic
	rings
295/13	• • • • to an acyclic saturated chain
295/13	• • • • • • • • • • • • • • • • • • •
275/155	nitrogen atoms separated by carbocyclic rings
	or by carbon chains interrupted by carbocyclic
	rings
295/14	• substituted by carbon atoms having three bonds
	to hetero atoms with at the most one bond to
	halogen, e.g. ester or nitrile radicals
295/145	with the ring nitrogen atoms and the carbon
	atoms with three bonds to hetero atoms
	attached to the same carbon chain, which is not
	interrupted by carbocyclic rings
295/15	to an acyclic saturated chain
295/155	• • • with the ring nitrogen atoms and the carbon
	atoms with three bonds to hetero atoms
	separated by carbocyclic rings or by carbon
	chains interrupted by carbocyclic rings
295/16	• acylated on ring nitrogen atoms
295/18	• • by radicals derived from carboxylic acids, or
205/102	sulfur or nitrogen analogues thereof
295/182	Radicals derived from carboxylic acids
295/185	from aliphatic carboxylic acids
295/192	from aromatic carboxylic acids
295/194	Radicals derived from thio- or thiono
	carboxylic acids
295/195	Radicals derived from nitrogen analogues of
205/20	carboxylic acids
295/20	by radicals derived from carbonic acid, or sulfur or nitrogen analogues thereof
205/205	Radicals derived from carbonic acid
295/205	
295/21	Radicals derived from sulfur analogues of carbonic acid
205/215	
295/215	Radicals derived from nitrogen analogues of carbonic acid
205/22	
295/22	• with hetero atoms directly attached to ring nitrogen
205/24	atoms
295/24	• • Oxygen atoms
295/26	Sulfur atoms
295/28	• Nitrogen atoms
295/30	• • • non-acylated
295/32	• • • acylated with carboxylic or carbonic acids, or their nitrogen or sulfur analogues
	then multigen of summa analogues
Heterocvclic	compounds having oxygen atoms, with or without

<u>Heterocyclic compounds having oxygen atoms, with or without</u> <u>sulphur, selenium, or tellurium atoms, as ring hetero atoms</u>

301/00	Preparation of oxiranes
--------	-------------------------

301/02	•	Synthesis of the oxirane ring
--------	---	-------------------------------

301/03	• by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
301/04	• • • with air or molecular oxygen
301/06	in the liquid phase
301/08	in the gaseous phase
301/10	with catalysts containing silver or gold
301/12	with hydrogen peroxide or inorganic peroxides
	or peracids
301/14	• • with organic peracids, or salts, anhydrides or esters thereof
301/16	• • • formed <u>in situ</u> , e.g. from carboxylic acids and hydrogen peroxide
301/18	from polybasic carboxylic acids
301/19	• • • with organic hydroperoxides
301/22	• • by oxidation of saturated compounds with air or
	molecular oxygen (of mixtures of unsaturated and saturated compounds C07D 301/04)
301/24	• • by splitting off HAL—Y from compounds
	containing the radical HAL—C—C—OY
301/26	• • Y being hydrogen
301/27	• Condensation of epihalohydrins or halohydrins
	with compounds containing active hydrogen atoms
	(macromolecular compounds <u>C08</u>)
301/28	• • by reaction with hydroxyl radicals
301/30	• • by reaction with carboxyl radicals
301/32	Separation; Purification
301/36	• Use of additives, e.g. for stabilisation
202/00	Come and a containing three month and since
303/00	Compounds containing three-membered rings
	having one oxygen atom as the only ring hetero atom
303/02	 Compounds containing oxirane rings
505/02	
303/04	 compounds containing oxirate rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
	containing only hydrogen and carbon atoms in
303/04	• containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
303/04	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more
303/04 303/06	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen
303/04 303/06 303/08	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more
303/04 303/06 303/08 303/10	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings
303/04 303/06 303/08	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly
303/04 303/06 303/08 303/10	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals with hydrocarbon radicals, substituted by halogen atoms or relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
303/04 303/06 303/08 303/10 303/12 303/14	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals
303/04 303/06 303/08 303/10 303/12	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals by esterified hydroxyl radicals
303/04 303/06 303/08 303/10 303/12 303/14 303/16	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals by esterified hydroxyl radicals
303/04 303/06 303/08 303/10 303/12 303/14 303/16	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals by esterified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or
303/04 303/06 303/08 303/10 303/12 303/14 303/16 303/17	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals by esterified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings
303/04 303/06 303/08 303/10 303/12 303/14 303/16 303/17 303/18	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals by esterified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by esterified hydroxyl radicals other in the oxirane rings condensed with carbocyclic ring systems having three or more relevant rings with hydroxyl radicals other in the oxirane rings condensed with carbocyclic ring systems having three or more relevant rings other in the oxirane rings
303/04 303/06 303/08 303/10 303/12 303/14 303/16 303/17 303/18	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals by esterified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by esterified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by etherified hydroxyl radicals
303/04 303/06 303/08 303/10 303/12 303/12 303/14 303/16 303/17 303/18 303/20	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by esterified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by etherified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings with hydroxyl radicals with hydroxyl radicals or doubly containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings with more relevant rings with monohydroxy compounds with monohydroxy compounds with monohydroxy compounds
303/04 303/06 303/08 303/10 303/12 303/14 303/16 303/17 303/18 303/20 303/22	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by esterified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by etherified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings with hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings with more relevant rings with monohydroxy compounds with monohydroxy compounds with monohydroxy group bound
303/04 303/06 303/08 303/10 303/12 303/14 303/16 303/17 303/18 303/20 303/22	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by esterified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by etherified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings with hydroxyl radicals obj etherified hydroxyl radicals obj etherified hydroxyl radicals obj etherified hydroxyl radicals obj etherified hydroxyl radicals oxirane rings oxirane rings oxirane rings oxirane rings oxirane rings oxirane rings axis and the hydroxy compounds axis and the hydroxy group bound to a six-membered aromatic ring,
303/04 303/06 303/08 303/10 303/12 303/14 303/16 303/17 303/18 303/20 303/22	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by esterified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by etherified hydroxyl radicals with monohydroxy compounds with monohydroxy compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not
303/04 303/06 303/08 303/10 303/12 303/14 303/16 303/17 303/18 303/20 303/22	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals by esterified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by esterified hydroxyl radicals by esterified hydroxyl radicals with hydroxarbon radicals or doubly bound oxygen atoms or doubly bound oxygen atoms by esterified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings with monohydroxy compounds containing no oxirane rings oxirane rings oxirane rings oxirane rings oxirane rings with monohydroxy compounds oxirane rings, the oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not being further substituted, i.e.
303/04 303/06 303/08 303/10 303/12 303/14 303/16 303/17 303/18 303/20 303/22	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals by esterified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by esterified hydroxyl radicals by esterified hydroxyl radicals with hydroxarbon radicals or doubly bound oxygen atoms or doubly bound oxygen atoms by esterified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings with monohydroxy compounds containing no oxirane rings oxirane rings oxirane rings oxirane rings oxirane rings with monohydroxy compounds oxirane rings, the oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not being further substituted, i.e.
303/04 303/06 303/08 303/10 303/12 303/14 303/16 303/17 303/18 303/20 303/22	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by esterified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by etherified hydroxyl radicals with monohydroxy compounds with monohydroxy compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not
303/04 303/06 303/08 303/10 303/12 303/14 303/16 303/17 303/18 303/20 303/22 303/23	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals by esterified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by esterified hydroxyl radicals by etherified hydroxyl radicals by etherified hydroxyl radicals o by etherified hydroxyl radicals o containing oxirane rings o by etherified hydroxyl radicals o by etherified hydroxyl radicals o containing no oxirane rings o containing no oxirane rings o containing no oxirane rings
303/04 303/06 303/08 303/10 303/12 303/14 303/16 303/17 303/18 303/20 303/22	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals or ontaining oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by free hydroxyl radicals or ontaining oxirane rings condensed with carbocyclic ring systems having three or more relevant rings with hydroxyl radicals or ontaining oxirane rings condensed with carbocyclic ring systems having three or more relevant rings with monohydroxy compounds containing no oxirane rings oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not being further substituted, i.e. CH₂-CH-CH₂-O-Aryl with polyhydroxy compounds
303/04 303/06 303/08 303/10 303/12 303/14 303/16 303/17 303/18 303/20 303/22 303/23	 containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by halogen atoms, nitro radicals or nitroso radicals in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by free hydroxyl radicals by esterified hydroxyl radicals containing oxirane rings condensed with carbocyclic ring systems having three or more relevant rings by esterified hydroxyl radicals by etherified hydroxyl radicals by etherified hydroxyl radicals o by etherified hydroxyl radicals o containing oxirane rings o by etherified hydroxyl radicals o by etherified hydroxyl radicals o containing no oxirane rings o containing no oxirane rings o containing no oxirane rings

ing netero ato	JIIIS
303/27	••••• having all hydroxyl radicals etherified with oxirane containing compounds
303/28	Ethers with hydroxy compounds containing oxirane rings
303/30	Ethers of oxirane-containing polyhydroxy compounds in which all hydroxyl radicals are etherified with oxirane-containing hydroxy compounds
303/31	 in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings
303/32	• • • by aldehydo- or ketonic radicals
303/34	 with hydrocarbon radicals, substituted by sulphur, selenium or tellurium atoms
303/36	• with hydrocarbon radicals, substituted by nitrogen atoms (nitro, nitroso radicals C07D 303/08)
303/38	• with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
303/40	• • • by ester radicals
303/42	• • • Acyclic compounds having a chain of seven or more carbon atoms, e.g. epoxidised fats
303/44	Esterified with oxirane-containing hydroxy compounds
303/46	• • • by amide or nitrile radicals
303/48	• with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms, e.g. ester or nitrile radicals
305/00	Heterocyclic compounds containing four-
202/00	membered rings having one oxygen atom as the
	only ring hetero atoms
305/02	• not condensed with other rings
305/02	 hor condensed with other rings having no double bonds between ring members or between ring members and non-ring members
305/06	 with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring atoms
305/08	• • • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring atoms
305/10	having one or more double bonds between ring members or between ring members and non-ring members
305/12	Beta-lactones
305/14	condensed with carbocyclic rings or ring systems
307/00	Heterocyclic compounds containing five- membered rings having one oxygen atom as the only ring hetero atom
207/02	
307/02	• not condensed with other rings
307/04	• having no double bonds between ring members or between ring members and non-ring members
307/06	 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
307/08	• • • Preparation of tetrahydrofuran
307/10	• • with substituted hydrocarbon radicals attached to ring carbon atoms
307/12	Radicals substituted by oxygen atoms
307/14	Radicals substituted by nitrogen atoms not
	forming part of a nitro radical

307/16	•••• Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile
	radicals
307/18	• • • with hetero atoms or with carbon atoms having
	three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
307/20	• • • • Oxygen atoms
307/20	Nitrogen atoms not forming part of a nitro
307722	radical
307/24	• • • Carbon atoms having three bonds to hetero
30//21	atoms with at the most one bond to halogen
307/26	• having one double bond between ring members or
	between a ring member and a non-ring member
307/28	with only hydrogen atoms, hydrocarbon or
	substituted hydrocarbon radicals, directly
	attached to ring carbon atoms
307/30	• • • with hetero atoms or with carbon atoms having
	three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile
307/32	radicals, directly attached to ring carbon atoms Oxygen atoms
307/32	in position 2, the oxygen atom being in its
507755	keto or unsubstituted enol form
307/34	• having two or three double bonds between ring
	members or between ring members and non-ring
	members
307/36	• • • with only hydrogen atoms or radicals
	containing only hydrogen and carbon atoms,
	directly attached to ring carbon atoms
307/38	with substituted hydrocarbon radicals attached
207/40	to ring carbon atoms
307/40 307/42	Radicals substituted by oxygen atoms
307/44	Singly bound oxygen atoms
307/45	Oxygen atoms acylated by a
501115	cyclopropane containing carboxylic acyl
	radical, e.g. chrysanthemumates
307/46	• • • • Doubly bound oxygen atoms, or two
	oxygen atoms singly bound to the same
	carbon atom
307/48	Furfural
307/50	Preparation from natural products
307/52	•••• Radicals substituted by nitrogen atoms not forming part of a nitro radical
307/54	• • • • Radicals substituted by carbon atoms having
00110	three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile
	radicals
307/56	• • • with hetero atoms or with carbon atoms having
	three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
307/58	One oxygen atom, e.g. butenolide
307/60	Two oxygen atoms, e.g. succinic anhydride
307/62	• • • • • • • • • • • • • • • • • • •
307/64	Sulfur atoms
307/66	Nitrogen atoms
307/68	••••••••••••••••••••••••••••••••••••••
	atoms with at the most one bond to halogen
307/70	Nitro radicals
307/71	attached in position 5

8			
307/72	••••• with hydrocarbon radicals, substituted by nitrogen-containing radicals, attached in position 2	309/08	• with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals,
307/73	•••••• by amino or imino, or substituted		directly attached to ring carbon atoms
501115	amino or imino radicals	309/10	• • Oxygen atoms
307/74	by hydrazino or hydrazono or such substituted radicals	309/12	 only hydrogen atoms and one oxygen atom directly attached to ring carbon atoms, e.g.
307/75	• • • • • • • • having carboxylic acyl radicals or		tetrahydropyranyl ethers
	their thio or nitrogen analogues directly attached to the hydrazino or	309/14	••• Nitrogen atoms not forming part of a nitro radical
307/76	hydrazono radical, e.g. hydrazides	309/16	• having one double bond between ring members or between a ring member and a non-ring member
	their thio or nitrogen analogues directly attached to the hydrazino	309/18	• containing only hydrogen and carbon atoms in addition to the ring hetero atom
	or hydrazono radical, e.g. semicarbazides	309/20	• with hydrogen atoms and substituted hydrocarbon radicals directly attached to ring carbon atoms
307/77	• ortho- or peri-condensed with carbocyclic rings or	309/22	Radicals substituted by oxygen atoms
	ring systems	309/24	Methylol radicals
307/78	. Benzo [b] furans; Hydrogenated benzo [b] furans	309/26	Carboxaldehyde radicals
307/79	• • • with only hydrogen atoms, hydrocarbon or	309/28	• with hetero atoms or with carbon atoms having
	substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring		three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals,
307/80	Radicals substituted by oxygen atoms		directly attached to ring carbon atoms
307/81	Radicals substituted by nitrogen atoms not	309/30	Oxygen atoms, e.g. delta-lactones
	forming part of a nitro radical	309/32	. having two double bonds between ring members or
307/82	• • • with hetero atoms or with carbon atoms having		between ring members and non-ring members
	three bonds to hetero atoms with at the most	309/34	 having three or more double bonds between ring
	one bond to halogen, e.g. ester or nitrile		members or between ring members and non-ring
	radicals, directly attached to carbon atoms of the hetero ring		members
307/83	Oxygen atoms	309/36	• • with oxygen atoms directly attached to ring
307/84	Carbon atoms having three bonds to hetero	2 00 (2 0	carbon atoms
	atoms with at the most one bond to halogen	309/38	• • • one oxygen atom in position 2 or 4, e.g. pyrones
307/85	••••• attached in position 2	309/40	• • • Oxygen atoms attached in positions 3 and 4,
307/86	• • • with an oxygen atom directly attached in position 7		e.g. maltol
307/87	• Benzo [c] furans; Hydrogenated benzo [c] furans	311/00	Heterocyclic compounds containing six-membered
307/88	 with one oxygen atom directly attached in position 1 or 3 		rings having one oxygen atom as the only hetero atom, condensed with other rings
307/885	• • • • 3,3-Diphenylphthalides	311/02	· ortho- or peri-condensed with carbocyclic rings or
307/89	••••••••••••••••••••••••••••••••••••••		ring systems
307/90	 with two oxygen atoms directly attached in positions 1 and 3 with an oxygen atom in position 1 and a 	311/04	• Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
301770	nitrogen atom in position 3, or <u>vice versa</u>	311/06	with oxygen or sulfur atoms directly attached in
307/91	Dibenzofurans; Hydrogenated dibenzofurans		position 2
307/92	Naphthofurans; Hydrogenated naphthofurans	311/08	• • • • not hydrogenated in the hetero ring
307/93	 condensed with a ring other than six-membered 	311/10	unsubstituted
307/935	Not further condensed cyclopenta [b] furans or	311/12	•••• substituted in position 3 and unsubstituted
5011755	hydrogenated cyclopenta [b] furans		in position 7
307/937	 with hydrocarbon or substituted hydrocarbon radicals directly attached in position 2, e.g. 	311/14	substituted in position 6 and unsubstituted in position 7
	prostacyclins	311/16	••••• substituted in position 7
307/94	• spiro-condensed with carbocyclic rings or ring	311/18	• • • • substituted otherwise than in position 3 or
	systems, e.g. griseofulvins		7
		311/20	• • • • hydrogenated in the hetero ring
309/00	Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring	311/22	• • • with oxygen or sulfur atoms directly attached in position 4
	hetero atom, not condensed with other rings	311/24	with carbon atoms having three bonds to
309/02	• having no double bonds between ring members or		hetero atoms with at the most one bond to
200/04	between ring members and non-ring members		halogen, e.g. ester or nitrile radicals, directly
309/04	• with only hydrogen atoms, hydrocarbon or		attached in position 2
	substituted hydrocarbon radicals, directly attached	311/26	with aromatic rings attached in position 2 or
309/06	to ring carbon atoms Radicals substituted by oxygen atoms		3

0	
311/28	•••• with aromatic rings attached in position 2 only
311/30	not hydrogenated in the hetero ring, e.g.
311/32	flavones 2,3-Dihydro derivatives, e.g. flavanones
311/32	with aromatic rings attached in position 3
311/34	only
311/36	•••• not hydrogenated in the hetero ring, e.g. isoflavones
311/38	••••••••••••••••••••••••••••••••••••••
311/40	•••• Separation, e.g. from natural material; Purification
311/42	• • • with oxygen or sulfur atoms in positions 2 and 4
311/44	•••• with one hydrogen atom in position 3
311/46	unsubstituted in the carbocyclic ring
311/48	••••••••••••••••••••••••••••••••••••••
511/48	linked together by a carbon chain
211/50	
311/50	••••••••••••••••••••••••••••••••••••••
311/52	Enol-esters or -ethers, or sulfur
	analogues thereof
311/54	substituted in the carbocyclic ring
311/56	• • • • without hydrogen atoms in position 3
311/58	••• other than with oxygen or sulphur atoms in
	position 2 or 4
311/60	•••• with aryl radicals attached in position 2
311/62	with oxygen atoms directly attached in
	position 3, e.g. anthocyanidins
311/64	• • • • with oxygen atoms directly attached in
511/01	position 8
311/66	• • • • with carbon atoms having three bonds to
511/00	hetero atoms with at the most one bond to
	halogen, e.g. ester or nitrile radicals, directly
	attached in position 2
311/68	••••• with nitrogen atoms directly attached in
	position 4
311/70	with two hydrocarbon radicals attached in
	position 2 and elements other than carbon
	and hydrogen in position 6
311/72	• • • • • 3,4-Dihydro derivatives having in
011/12	position 2 at least one methyl radical
	and in position 6 one oxygen atom, e.g.
	tocopherols
311/74	• Benzo[b]pyrans, hydrogenated in the carbocyclic
	ring
311/76	. Benzo[c]pyrans
311/78	Ring systems having three or more relevant rings
311/78	Dibenzopyrans; Hydrogenated dibenzopyrans
311/82	Xanthenes
311/84	•••• with hetero atoms or with carbon atoms
	having three bonds to hetero atoms with
	at the most one bond to halogen, e.g. ester
	or nitrile radicals, directly attached in
01115	position 9
311/86	Oxygen atoms, e.g. xanthones
311/88	Nitrogen atoms
311/90	• • • • with hydrocarbon radicals, substituted
	by amino radicals, directly attached in
	position 9
311/92	Naphthopyrans; Hydrogenated naphthopyrans
311/94	condensed with rings other than six-membered or

311/94 • condensed with rings other than six-membered or with ring systems containing such rings

311/96	 spiro-condensed with carbocyclic rings or ring systems
313/00	Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom
313/02	• Seven-membered rings
313/02	 . not condensed with other rings
	-
313/06	• • condensed with carbocyclic rings or ring systems
313/08	condensed with one six-membered ring
313/10	• • • condensed with two six-membered rings
313/12	[b,e]-condensed
313/14	[b,f]-condensed
313/16	• Eight-membered rings
313/18	not condensed with other rings
313/20	• condensed with carbocyclic rings or ring systems
21 5 100	
315/00	Heterocyclic compounds containing rings having one oxygen atom as the only ring hetero
	atom according to more than one of groups
	C07D 303/00 - C07D 313/00
317/00	Heterocyclic compounds containing five-
	membered rings having two oxygen atoms as the
217/02	only ring hetero atoms
317/02	having the hetero atoms in positions 1 and 2
317/04	• • not condensed with other rings
317/06	condensed with carbocyclic rings or ring systems
317/08	• having the hetero atoms in positions 1 and 3
317/10	• • not condensed with other rings
317/12	with only hydrogen atoms or radicals
	containing only hydrogen and carbon atoms,
	directly attached to ring carbon atoms
317/14	with substituted hydrocarbon radicals attached
	to ring carbon atoms
317/16	Radicals substituted by halogen atoms or
	nitro radicals
317/18	Radicals substituted by singly bound oxygen
215/20	or sulfur atoms
317/20	• • • • Free hydroxyl or mercaptan
317/22	•••• etherified
317/24	esterified
317/26	Radicals substituted by doubly bound oxygen
	or sulfur atoms or by two such atoms singly
	bound to the same carbon atom
317/28	Radicals substituted by nitrogen atoms (nitro
217/20	radicals <u>C07D 317/16</u>)
317/30	Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile
	radicals
317/32	• • • with hetero atoms or with carbon atoms having
517/52	three bonds to hetero atoms with at the most
	one bond to halogen, e.g. ester or nitrile
	radicals, directly attached to ring carbon atoms
317/34	Oxygen atoms
317/36	Alkylene carbonates; Substituted alkylene
011100	carbonates
317/38	Ethylene carbonate
317/40	••••••••••••••••••••••••••••••••••••••
	carbonates
317/42	Halogen atoms or nitro radicals
317/44	• ortho- or peri-condensed with carbocyclic rings or
	ring systems
317/46	condensed with one six-membered ring
	-

ing hetero atc	oms
317/48	• • • Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on
317/50	 the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly
317/52	attached to atoms of the carbocyclic ring Radicals substituted by halogen atoms or nitro radicals
317/54	Radicals substituted by oxygen atoms
317/56	Radicals substituted by sulfur atoms
317/58	Radicals substituted by summarized and a construction of the substituted by nitrogen atoms (nitro radicals <u>C07D 317/52</u>)
317/60	••••••••••••••••••••••••••••••••••••••
317/62	••••• with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to atoms of the carbocyclic ring
317/64	Oxygen atoms
317/66	••••• Nitrogen atoms not forming part of a nitro radical
317/68	••••• Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
317/70	• • condensed with ring systems containing two or more relevant rings
317/72	• spiro-condensed with carbocyclic rings
319/00	Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
319/00 319/02	rings having two oxygen atoms as the only ring
	rings having two oxygen atoms as the only ring hetero atoms
319/02	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes
319/02 319/04	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
319/02 319/04 319/06 319/08	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems
319/02 319/04 319/06 319/08 319/10	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes
319/02 319/04 319/06 319/08 319/10 319/12	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings
319/02 319/04 319/06 319/08 319/10 319/12 319/14	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with other rings condensed with other rings condensed with other rings ont condensed with other rings condensed with other rings condensed with other rings condensed with other rings
319/02 319/04 319/06 319/08 319/10 319/12	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings
319/02 319/04 319/06 319/08 319/10 319/12 319/14 319/16 319/18	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems condensed with carbocyclic rings or ring systems condensed with other rings condensed with other rings condensed with other rings condensed with other rings tendensed with one six-membered ring Ethylenedioxybenzenes, not substituted on the hetero ring
319/02 319/04 319/06 319/08 319/10 319/12 319/14 319/16	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems condensed with carbocyclic rings or ring systems condensed with other rings condensed with other rings condensed with other rings condensed with other rings tordensed with one six-membered ring Ethylenedioxybenzenes, not substituted on
319/02 319/04 319/06 319/08 319/10 319/12 319/14 319/16 319/18 319/20 319/22 319/24	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems . condensed with other rings condensed with one six-membered ring Settylenedioxybenzenes, not substituted on the hetero ring with substituents attached to the hetero ring condensed with one naphthalene or
319/02 319/04 319/06 319/08 319/10 319/12 319/14 319/16 319/18 319/20 319/22	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with other rings condensed with other rings condensed with one six-membered ring Sethylenedioxybenzenes, not substituted on the hetero ring with substituents attached to the hetero ring condensed with one naphthalene or hydrogenated naphthalene ring system
319/02 319/04 319/06 319/08 319/10 319/12 319/14 319/16 319/18 319/20 319/22 319/24	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems a condensed with other rings condensed with other rings condensed with other rings condensed with other rings condensed with one six-membered ring Second with one six-membered ring with substituents attached to the hetero ring condensed with one naphthalene or hydrogenated naphthalene ring system [b,e]-condensed with two six-membered rings Heterocyclic compounds containing rings having two oxygen atoms as the only ring hetero atoms, not provided for by groups
319/02 319/04 319/06 319/08 319/10 319/12 319/14 319/16 319/18 319/20 319/22 319/24 321/00	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with one six-membered ring Secondensed with one six-membered ring condensed with one naphthalene or hydrogenated naphthalene or hydrogenated naphthalene ring system [b,e]-condensed with two six-membered rings Heterocyclic compounds containing rings having two oxygen atoms as the only ring hetero atoms, not provided for by groups C07D 317/00 - C07D 319/00
319/02 319/04 319/06 319/08 319/10 319/12 319/14 319/16 319/18 319/20 319/22 319/24 321/00	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with other rings condensed with other rings condensed with one six-membered ring condensed with one six-membered ring with substituents attached to the hetero ring condensed with one naphthalene or hydrogenated naphthalene ring system [b,e]-condensed with two six-membered rings Heterocyclic compounds containing rings having two oxygen atoms as the only ring hetero atoms, not provided for by groups <u>C07D 317/00</u> - <u>C07D 319/00</u>
319/02 319/04 319/06 319/08 319/10 319/12 319/14 319/16 319/18 319/20 319/22 319/24 321/00 321/02 321/02	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with one six-membered ring condensed with one six-membered ring sethylenedioxybenzenes, not substituted on the hetero ring with substituents attached to the hetero ring condensed with one naphthalene or hydrogenated naphthalene ring system [b,e]-condensed with two six-membered rings [b,e]-condensed with two six-membered rings seven-membered rings not condensed with other rings not condensed with other rings 1,3-Dioxepines; Hydrogenated 1,3-dioxepines
319/02 319/04 319/06 319/08 319/10 319/12 319/14 319/16 319/18 319/20 319/22 319/24 321/00 321/02 321/04 321/06	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with one six-membered ring condensed with one six-membered ring set condensed with one naphthalene or hydrogenated naphthalene ring system condensed with one naphthalene or hydrogenated naphthalene ring system [b,e]-condensed with two six-membered rings Heterocyclic compounds containing rings having two oxygen atoms as the only ring hetero atoms, not provided for by groups C07D 317/00 - C07D 319/00 Seven-membered rings not condensed with other rings 1,3-Dioxepines; Hydrogenated 1,3-dioxepines 1,4-Dioxepines; Hydrogenated 1,4-dioxepines
319/02 319/04 319/06 319/08 319/10 319/12 319/14 319/16 319/18 319/20 319/22 319/24 321/00 321/02 321/04 321/06 321/08	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with other rings condensed with one six-membered ring condensed with one six-membered ring the hetero ring with substituents attached to the hetero ring condensed with one naphthalene or hydrogenated naphthalene ring system [b,e]-condensed with two six-membered rings Heterocyclic compounds containing rings having two oxygen atoms as the only ring hetero atoms, not provided for by groups C07D 317/00 - C07D 319/00 Seven-membered rings not condensed with other rings 1,3-Dioxepines; Hydrogenated 1,3-dioxepines 1,4-Dioxepines; Hydrogenated 1,4-dioxepines condensed with carbocyclic rings or ring systems
319/02 319/04 319/06 319/08 319/10 319/12 319/14 319/16 319/18 319/20 319/22 319/24 321/00 321/02 321/04 321/06 321/08 321/10	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems a condensed with other rings condensed with other rings condensed with other rings condensed with other rings condensed with one six-membered ring condensed with one six-membered ring sethylenedioxybenzenes, not substituted on the hetero ring with substituents attached to the hetero ring condensed with one naphthalene or hydrogenated naphthalene ring system [b,e]-condensed with two six-membered rings [b,e]-condensed with two six-membered rings seven-membered rings not condensed with other rings not condensed with other rings 1,3-Dioxepines; Hydrogenated 1,3-dioxepines 1,3-Dioxepines; Hydrogenated 1,4-dioxepines 1,4-Dioxepines; Hydrogenated 1,4-dioxepines condensed with carbocyclic rings or ring systems
 319/02 319/04 319/06 319/08 319/10 319/12 319/14 319/16 319/18 319/20 319/22 319/24 321/00 321/02 321/04 321/06 321/10 321/12 323/00 	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with other rings condensed with one six-membered ring condensed with one six-membered ring condensed with one naphthalene or hydrogenated naphthalene ring system condensed with one naphthalene or hydrogenated naphthalene ring system [b,e]-condensed with two six-membered rings Heterocyclic compounds containing rings having two oxygen atoms as the only ring hetero atoms, not provided for by groups C07D 317/00 - C07D 319/00 Seven-membered rings not condensed with other rings 1,3-Dioxepines; Hydrogenated 1,3-dioxepines 1,4-Dioxepines; Hydrogenated 1,4-dioxepines condensed with carbocyclic rings or ring systems
319/02 319/04 319/06 319/08 319/10 319/12 319/14 319/16 319/18 319/20 319/22 319/24 321/00 321/02 321/04 321/06 321/08 321/10 321/12	 rings having two oxygen atoms as the only ring hetero atoms 1,2-Dioxanes; Hydrogenated 1,2-dioxanes 1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems 1,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings condensed with carbocyclic rings or ring systems a condensed with other rings condensed with other rings condensed with other rings condensed with other rings condensed with one six-membered ring condensed with one six-membered ring sethylenedioxybenzenes, not substituted on the hetero ring with substituents attached to the hetero ring condensed with one naphthalene or hydrogenated naphthalene ring system [b,e]-condensed with two six-membered rings [b,e]-condensed with two six-membered rings seven-membered rings not condensed with other rings not condensed with other rings 1,3-Dioxepines; Hydrogenated 1,3-dioxepines 1,3-Dioxepines; Hydrogenated 1,4-dioxepines 1,4-Dioxepines; Hydrogenated 1,4-dioxepines condensed with carbocyclic rings or ring systems

323/06	Trioxane
325/00	Heterocyclic compounds containing rings having oxygen as the only ring hetero atom according to more than one of groups <u>C07D 303/00</u> - <u>C07D 323/00</u>
327/00	Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
327/02	• one oxygen atom and one sulfur atom
327/04	Five-membered rings
327/06	• Six-membered rings
327/08	• • [b,e]-condensed with two six-membered carbocyclic rings
327/10	• two oxygen atoms and one sulfur atom, e.g. cyclic sulfates
329/00	Heterocyclic compounds containing rings having oxygen and selenium or oxygen and tellurium atoms as the only ring hetero atoms

<u>Heterocyclic compounds having sulfur, selenium or tellurium as</u> <u>the only ring hetero atoms</u>

331/00	Heterocyclic compounds containing rings of less than five members, having one sulfur atom as the only ring hetero atom
331/02	• Three-membered rings
331/04	• Four-membered rings
333/00	Heterocyclic compounds containing five- membered rings having one sulfur atom as the only ring hetero atom
333/02	 not condensed with other rings
333/04	• • not substituted on the ring sulphur atom
333/06	• • • with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
333/08	Hydrogen atoms or radicals containing only hydrogen and carbon atoms
333/10	Thiophene
333/12	Radicals substituted by halogen atoms or nitro or nitroso radicals
333/14	Radicals substituted by singly bound hetero atoms other than halogen
333/16	•••• by oxygen atoms
333/18	by sulfur atoms
333/20	• • • • by nitrogen atoms (nitro, nitroso radicals <u>C07D 333/12</u>)
333/22	• • • Radicals substituted by doubly bound hetero atoms, or by two hetero atoms other than halogen singly bound to the same carbon atom
333/24	• • • Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
333/26	• • • with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
333/28	Halogen atoms
333/30	Hetero atoms other than halogen
333/32	Oxygen atoms
333/34	Sulfur atoms

337/04

337/06

337/08

333/36	Nitrogen atoms	
333/38	Carbon atoms having three bonds to hetero	-
	atoms with at the most one bond to halogen,	-
222/40	e.g. ester or nitrile radicals	-
333/40 333/42	Thiophene-2-carboxylic acid with nitro or nitroso radicals directly	-
333/42	attached to ring carbon atoms	-
333/44	• • • • • attached in position 5	-
333/46	 substituted on the ring sulfur atom 	
333/48	 by oxygen atoms 	
333/50	 condensed with carbocyclic rings or ring systems 	
333/52	 Benzo[b]thiophenes; Hydrogenated benzo[b]thiophenes 	-
333/54	 with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring 	
333/56	• • • • Radicals substituted by oxygen atoms	
333/58	Radicals substituted by nitrogen atoms	•
333/60	Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most	
	one bond to halogen, e.g. ester or nitrile radicals	
333/62	• • • with hetero atoms or with carbon atoms having	
	three bonds to hetero atoms with at the most	4
	one bond to halogen, e.g. ester or nitrile	•
	radicals, directly attached to carbon atoms of	
	the hetero ring	,
333/64	Oxygen atoms	•
333/66	Nitrogen atoms not forming part of a nitro	
222/69	radical	He
333/68	Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen	NC
333/70	attached in position 2	
333/72	Benzo[c]thiophenes; Hydrogenated benzo[c]thiophenes	
333/74	. Naphthothiophenes	
333/76	. Dibenzothiophenes	
333/78	 condensed with rings other than six-membered or with ring systems containing such rings 	4
333/80	Seven-membered rings	
335/00	Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring	2
335/02	hetero atom • not condensed with other rings	4
335/02 335/04	 not condensed with other rings condensed with carbocyclic rings or ring systems 	
335/04	Benzothiopyrans; Hydrogenated benzothiopyrans	2
335/08	Naphthothiopyrans; Hydrogenated	
555/00	naphthothiopyrans	2
335/10	Dibenzothiopyrans; Hydrogenated dibenzothiopyrans	2
335/12	• • Thioxanthenes	4
335/14	•••• with hetero atoms or with carbon atoms	
	having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9	2
335/16	• • • • • Oxygen atoms, e.g. thioxanthones	
335/18	Nitrogen atoms	
335/20	••••••••••••••••••••••••••••••••••••••	
	amino radicals, directly attached in position 9	4
227/00		4
337/00	Heterocyclic compounds containing rings of more than six members having one sulfur atom as the	
	only ring hetero atom	2
337/02	Seven-membered rings	
551102		

337/10 337/12 337/14 337/16	 . condensed with two six-membered rings . [b,e]-condensed . [b,f]-condensed Eight-membered rings
339/00	Heterocyclic compounds containing rings having two sulfur atoms as the only ring hetero atoms
339/02	• Five-membered rings
339/04	• having the hetero atoms in positions 1 and 2, e.g. lipoic acid
339/06	• having the hetero atoms in positions 1 and 3, e.g. cyclic dithiocarbonates
339/08	• Six-membered rings
341/00	Heterocyclic compounds containing rings having three or more sulfur atoms as the only ring hetero atoms
343/00	Heterocyclic compounds containing rings having sulfur and selenium or sulfur and tellurium atoms as the only ring hetero atoms
345/00	Heterocyclic compounds containing rings having selenium or tellurium atoms as the only ring hetero atoms
347/00	Heterocyclic compounds containing rings having halogen atoms as ring hetero atoms
	compounds containing two or more hetero rings
<u>OTE</u>	
two or mot by different neither con	$\frac{0.7D \ 401/00}{100} - \frac{0.07D \ 421/00}{000}$ cover compounds containing re relevant hetero rings at least two of which are covered at main groups of groups $\frac{0.07D \ 203/00}{000} - \frac{0.07D \ 347/00}{0000}$, adensed among themselves nor condensed with a arbocyclic ring or ring system.
401/00	Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only
	ring hetero atoms, at least one ring being a six- membered ring with only one nitrogen atom
401/02	• containing two hetero rings
401/04	• directly linked by a ring-member-to-ring-member bond
401/06	• Iinked by a carbon chain containing only aliphatic carbon atoms
401/08	• linked by a carbon chain containing alicyclic rings
401/10	• Iinked by a carbon chain containing aromatic rings
401/12	Iinked by a chain containing hetero atoms as chain links

. . not condensed with other rings

. . condensed with carbocyclic rings or ring systems

. . . condensed with one six-membered ring

401/14 . containing three or more hetero rings403/00 Heterocyclic compounds containing two or more

403/00Heterocyclic compounds containing two or more
hetero rings, having nitrogen atoms as the only
ring hetero atoms, not provided for by group
C07D 401/00403/02. containing two hetero rings

- 403/04 . . directly linked by a ring-member-to-ring-member bond
- 403/06 . . linked by a carbon chain containing only aliphatic carbon atoms

403/08	• Iinked by a carbon chain containing alicyclic rings
403/10	Inked by a carbon chain containing aromatic rings
403/12	 linked by a chain containing hetero atoms as chain links
403/14	• containing three or more hetero rings
405/00	Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
405/02	• containing two hetero rings
405/04	• directly linked by a ring-member-to-ring-member bond
405/06	• Iinked by a carbon chain containing only aliphatic carbon atoms
405/08	• Iinked by a carbon chain containing alicyclic rings
405/10	• Iinked by a carbon chain containing aromatic rings
405/12	• Iinked by a chain containing hetero atoms as chain links
405/14	• containing three or more hetero rings
407/00	Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group <u>C07D 405/00</u>
407/02	• containing two hetero rings
407/04	• directly linked by a ring-member-to-ring-member bond
407/06	• Iinked by a carbon chain containing only aliphatic carbon atoms
407/08	• Iinked by a carbon chain containing alicyclic rings
407/10	• Iinked by a carbon chain containing aromatic rings
407/12	• Iinked by a chain containing hetero atoms as chain links
407/14	• containing three or more hetero rings
409/00	Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
409/02	 containing two hetero rings
409/04	• directly linked by a ring-member-to-ring-member bond
409/06	• Iinked by a carbon chain containing only aliphatic carbon atoms
409/08	. linked by a carbon chain containing alicyclic rings
409/10	• Iinked by a carbon chain containing aromatic rings
409/12	• linked by a chain containing hetero atoms as chain links
409/14	• containing three or more hetero rings
411/00	Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and
411/02	sulfur atoms as the only ring hetero atoms
411/02	• containing two hetero rings
411/04	directly linked by a ring-member-to-ring-member bond linked by a carbon chain containing only alighetic
411/00	• Iinked by a carbon chain containing only aliphatic carbon atoms

411/08	• Iinked by a carbon chain containing alicyclic rings
411/10	 linked by a carbon chain containing aromatic rings
411/12	 linked by a chain containing hetero atoms as chain links
411/14	• containing three or more hetero rings
413/00	Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and
413/02	oxygen atoms as the only ring hetero atomscontaining two hetero rings
413/02	 containing two netero rings directly linked by a ring-member-to-ring-member
413/04	bond
413/06	Inked by a carbon chain containing only aliphatic carbon atoms
413/08	• Iinked by a carbon chain containing alicyclic rings
413/10	• Iinked by a carbon chain containing aromatic rings
413/12	• I linked by a chain containing hetero atoms as chain links
413/14	• containing three or more hetero rings
415/00	Heterocyclic compounds containing the thiamine skeleton
417/00	Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not
	provided for by group <u>C07D 415/00</u>
417/02	• containing two hetero rings
417/04	• • directly linked by a ring-member-to-ring-member bond
417/06	• Iinked by a carbon chain containing only aliphatic carbon atoms
417/08	• Iinked by a carbon chain containing alicyclic rings
417/10	• Iinked by a carbon chain containing aromatic rings
417/12	• Iinked by a chain containing hetero atoms as chain links
417/14	• containing three or more hetero rings
419/00	Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen, oxygen, and sulfur atoms as the only ring hetero atoms
419/02	• containing two hetero rings
419/04	• • directly linked by a ring-member-to-ring-member bond
419/06	linked by a carbon chain containing only aliphatic carbon atoms
419/08	• Iinked by a carbon chain containing alicyclic rings
419/10	• I linked by a carbon chain containing aromatic rings
419/12	• I linked by a chain containing hetero atoms as chain links
419/14	• containing three or more hetero rings
421/00	Heterocyclic compounds containing two or more hetero rings, at least one ring having selenium, tellurium, or halogen atoms as ring hetero atoms
421/02	• containing two hetero rings

421/04	• directly linked by a ring-member-to-ring-member bond
421/06	• Iinked by a carbon chain containing only aliphatic carbon atoms
421/08	 linked by a carbon chain containing alicyclic rings
421/10	• Iinked by a carbon chain containing aromatic rings
421/12	• Iinked by a chain containing hetero atoms as chain links
421/14	• containing three or more hetero rings

<u>Heterocyclic compounds containing condensed hetero ring</u> <u>systems</u>

NOTES

- Groups <u>C07D 451/00</u> <u>C07D 517/00</u> cover compounds containing one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system, with or without other non-condensed hetero rings.
- For the purpose of classification in groups <u>C07D 451/00</u> - <u>C07D 519/00</u>, the degree of hydrogenation of the ring system is not taken into consideration.
- 3. For the purpose of classification in groups <u>C07D 451/00</u> - <u>C07D 463/00</u>, <u>C07D 473/00</u> - <u>C07D 477/00</u>, <u>C07D 489/00</u>, <u>C07D 499/00</u> - <u>C07D 507/00</u>, the wording of the groups has to be understood, in the absence of an indication to the contrary, as including ring systems further condensed with carbocyclic rings or ring systems, but excluding ring systems further condensed with other hetero rings, either directly or through a common carbocyclic ring system, e.g. sparteine is classified in group <u>C07D 471/22</u>, not in group <u>C07D 455/02</u>.
- In groups <u>C07D 471/00</u>, <u>C07D 487/00</u>, <u>C07D 491/00</u> - <u>C07D 498/00</u> or <u>C07D 513/00</u> - <u>C07D 517/00</u>, the subdivision is based on the number of relevant hetero rings.
 - 451/00 Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof
- 451/02 . containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane; Cyclic acetals thereof 451/04 . . with hetero atoms directly attached in position 3 of the 8-azabicyclo [3.2.1] octane or in position 7 of the 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring system 451/06 . . . Oxygen atoms 451/08 . . . Diarylmethoxy radicals 451/10 • • • acvlated by aliphatic or araliphatic carboxylic acids, e.g. atropine, scopolamine 451/12 . . . acylated by aromatic or heteroaromatic carboxylic acids, e.g. cocaine 451/14 . containing 9-azabicyclo [3.3.1] nonane ring systems, e.g. granatane, 2-aza-adamantane; Cyclic acetals thereof 453/00 Heterocyclic compounds containing quinuclidine
- or iso-quinuclidine ring systems, e.g. quinine alkaloids
- 453/02 . containing not further condensed quinuclidine ring systems

453/04	• having a quinolyl-4, a substituted quinolyl-4 or a alkylenedioxy-quinolyl-4 radical linked through only one carbon atom, attached in position 2, e.g. quinine
453/06	• containing isoquinuclidine ring systems
455/00	Heterocyclic compounds containing quinolizine ring systems, e.g. emetine alkaloids, protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine
455/02	 containing not further condensed quinolizine ring systems
455/03	 containing quinolizine ring systems directly condensed with at least one six-membered carbocyclic ring, e.g. protoberberine; Alkylenedioxy derivatives of dibenzo [a, g] quinolizines, e.g. berberine
455/04	• containing a quinolizine ring system condensed with only one six-membered carbocyclic ring, e.g. julolidine
455/06	containing benzo [a] quinolizine ring systems
455/08	•••• having an isoquinolyl-1, a substituted isoquinolyl-1 or an alkylenedioxyisoquinolyl-1 radical linked through only one carbon atom, attached in

457/00 Heterocyclic compounds containing indolo [4, 3-f, g] quinoline ring systems, e.g. derivatives of ergoline, of the formula:

position 2, e.g. emetine

	lysergic acid (compounds of the cyclic peptide type derived from ergotamane <u>C07D 519/02</u>)
457/02	• with hydrocarbon or substituted hydrocarbon radicals, attached in position 8
457/04	 with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 8
457/06	• • Lysergic acid amides
457/08	• • in which the amide nitrogen is a member of a heterocyclic ring
457/10	• with hetero atoms directly attached in position 8
457/12	Nitrogen atoms
457/14	• containing indolo [4, 3-f, g] quinoline ring systems condensed with carbocyclic rings or ring systems
459/00	Heterocyclic compounds containing benz [g] indolo [2, 3-a] quinolizine ring systems, e.g. yohimbine; 16, 18-lactones thereof, e.g. reserpic acid lactone
461/00	Heterocyclic compounds containing indolo [3,2,1- d,e] pyrido [3,2,1,j] [1,5]-naphthyridine ring

systems, e.g. vincamine (dimeric indolo alkaloids C07D 519/04)

463/00	8/00 Heterocyclic compounds containing 1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:						
	$c_{1} = c_{1}$, e.g. carbacephalosporins; Such						
	\Box_{7} \Box_{6} \Box_{5} \Box_{7} \Box_{6}						
	$\begin{bmatrix} 1_8 \\ -N \end{bmatrix} \xrightarrow{2} \begin{bmatrix} 3 \\ -C \end{bmatrix}$						
	ring systems being further condensed, e.g. 2,3-						
	condensed with an oxygen-, nitrogen- or sulfur- containing hetero ring						
463/02	 Preparation (by microbiological processes 						
	<u>C12P 17/18</u>)						
463/04	• • by forming the ring or condensed ring systems						
463/06	. from compounds already containing the ring or						
	condensed ring systems, e.g. by dehydrogenation						
	of the ring, by introduction, elimination or modification of substituents						
463/08	• • • Modification of a carboxyl group directly						
	attached in position 2, e.g. esterification						
463/10	• with a carbon atom having three bonds to hetero						
	atoms with at the most one bond to halogen, e.g. an						
463/12	ester or nitrile radical, directly attached in position 2 • with hydrogen atoms, hydrocarbon or substituted						
403/12	hydrocarbon radicals attached in position 7						
463/14	• with hetero atoms directly attached in position 7						
463/16	Nitrogen atoms						
463/18	further acylated by radicals derived from						
	carboxylic acids or by nitrogen or sulfur						
1(2/20	analogues thereof						
463/20	••••• with the acylating radicals further substituted by hetero atoms or by carbon						
	atoms having three bonds to hetero atoms						
	with at the most one bond to halogen						
463/22	further substituted by nitrogen atoms						
471/00	Heterocyclic compounds containing						
	nitrogen atoms as the only ring hetero						
	atoms in the condensed system, at least one						
	ring being a six-membered ring with one nitrogen atom, not provided for by groups						
	<u>C07D 451/00</u> - <u>C07D 463/00</u>						
471/02	• in which the condensed system contains two hetero						
	rings						
471/04	. Ortho-condensed systems						
471/06	• Peri-condensed systems						
471/08 471/10	Bridged systems Spiro-condensed systems						
471/10	Spiro-condensed systemsin which the condensed system contains three hetero						
4/1/12	rings						
471/14	• Ortho-condensed systems						
471/16	• • Peri-condensed systems						
471/18	• • Bridged systems						
471/20	• Spiro-condensed systems						
471/22	 in which the condensed systems contains four or more hetero rings 						
	-						
473/00	Heterocyclic compounds containing purine ring						
172/02	systems						
473/02	• with oxygen, sulphur, or nitrogen atoms directly attached in positions 2 and 6						
473/04	two oxygen atoms						
473/06	• • • with radicals containing only hydrogen and						
	carbon atoms, attached in position 1 or 3						
473/08	• • • with methyl radicals in positions 1 and 3, e.g.						
	theophylline						

473/10	
	•••• with methyl radicals in positions 3 and 7, e.g. theobromine
473/12	• • • • with methyl radicals in positions 1, 3, and 7, e.g. caffeine
473/14	• • • with two methyl radicals in positions 1 and 3
175/11	and two methyl radicals in positions 7, 8, or 9
473/16	• • two nitrogen atoms
473/18	• one oxygen and one nitrogen atom, e.g. guanine
473/20	• • two sulfur atoms
473/22	• • one oxygen and one sulfur atom
473/24	one nitrogen and one sulfur atom
473/26	• with an oxygen, sulphur, or nitrogen atom directly attached in position 2 or 6, but not in both
473/28	• • Oxygen atom
473/30	• • • attached in position 6, e.g. hypoxanthine
473/32	Nitrogen atom
473/34	• • • attached in position 6, e.g. adenine
473/36	• • Sulfur atom
473/38	• • • attached in position 6
473/40	• with halogen atoms or perhalogeno-alkyl radicals directly attached in position 2 or 6
475/00	Heterocyclic compounds containing pteridine ring systems
475/02	• with an oxygen atom directly attached in position 4
475/04	• • with a nitrogen atom directly attached in position 2
475/06	• with a nitrogen atom directly attached in position 4
475/08	• • with a nitrogen atom directly attached in position 2
475/10	• • with an aromatic or hetero-aromatic ring directly attached in position 2
475/12	 containing pteridine ring systems condensed with carbocyclic rings or ring systems
475/14	• • Benz [g] pteridines, e.g. riboflavin
477/00	Heterocyclic compounds containing 1-azabicyclo
	[2 2 0] handana mina anatanya ita samu ana da
	containing a ring system of the formula:
	, e.g. carbapenicillins, thienamycins;
	[3.2.0] neptane ring systems, i.e. compounds containing a ring system of the formula: , e.g. carbapenicillins, thienamycins; $\begin{bmatrix} C_6 \\ -5 \end{bmatrix} = \begin{bmatrix} C_7 \\ -1 \end{bmatrix} =$
	$\dot{C}^{\prime} - \dot{N}^{1} - \dot{Z}\dot{C}$ Such ring systems being further condensed, e.g.
477/02	Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or
477/02 477/04	 Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulphur-containing hetero ring Preparation (by microbiological processes
	 Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulphur-containing hetero ring Preparation (by microbiological processes <u>C12P 17/18</u>)
477/04	 Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulphur-containing hetero ring Preparation (by microbiological processes C12P 17/18) by forming the ring or condensed ring systems from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or
477/04	 Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulphur-containing hetero ring Preparation (by microbiological processes <u>C12P 17/18</u>) by forming the ring or condensed ring systems from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents Modification of a carboxyl group directly
477/04 477/06 477/08	 Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulphur-containing hetero ring Preparation (by microbiological processes C12P 17/18) by forming the ring or condensed ring systems from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents Modification of a carboxyl group directly attached in position 2, e.g. esterification
477/04 477/06	 Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulphur-containing hetero ring Preparation (by microbiological processes C12P 17/18) by forming the ring or condensed ring systems from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents Modification of a carboxyl group directly attached in position 2, e.g. esterification with hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 4,
477/04 477/06 477/08	 Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulphur-containing hetero ring Preparation (by microbiological processes C12P 17/18) by forming the ring or condensed ring systems from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents Modification of a carboxyl group directly attached in position 2, e.g. esterification with hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 4, and with a carbon atom having three bonds to hetero
477/04 477/06 477/08	 Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulphur-containing hetero ring Preparation (by microbiological processes C12P 17/18) by forming the ring or condensed ring systems from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents Modification of a carboxyl group directly attached in position 2, e.g. esterification with hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 4, and with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an
477/04 477/06 477/08 477/10	 Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulphur-containing hetero ring Preparation (by microbiological processes C12P 17/18) by forming the ring or condensed ring systems from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents Modification of a carboxyl group directly attached in position 2, e.g. esterification with hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 4, and with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2
477/04 477/06 477/08	 Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulphur-containing hetero ring Preparation (by microbiological processes C12P 17/18) by forming the ring or condensed ring systems from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents Modification of a carboxyl group directly attached in position 2, e.g. esterification with hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 4, and with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an

477/14	••• with hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached in position 3
477/16	• • • with hetero atoms or carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 3
477/18	Oxygen atoms
477/20	Sulfur atoms
477/22	Nitrogen atoms
477/24	• with hetero atoms or carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 6
477/26	• with hetero atoms or carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 4
487/00	Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D 451/00 - C07D 477/00
487/02	• in which the condensed system contains two hetero
107/02	rings
487/04	• Ortho-condensed systems
487/06	• Peri-condensed systems
487/08	Bridged systems
487/10	Spiro-condensed systems
487/12	• in which the condensed system contains three hetero rings
487/14	Ortho-condensed systems
487/16	Peri-condensed systems
487/18	Bridged systems
487/20	Spiro-condensed systems
487/22	• in which the condensed system contains four or more hetero rings
489/00	Heterocyclic compounds containing 4aH-8, 9 c- Iminoethano-phenanthro [4, 5-b, c, d] furan ring systems, e.g. derivatives of [4, 5-epoxy]-morphinan of the formula: 17 10 17 10 17 10 19 14 14 14 14 14 14 14 15 14 14 14 15 14 14 15 14 14 14 15 14 14 14 14 14 14 14 14
489/02	• with oxygen atoms attached in positions 3 and 6, e.g. morphine, morphinone
489/04	Salts; Organic complexes
489/06	• with a hetero atom directly attached in position 14
489/08	• • Oxygen atom
489/09	• containing 4aH-8, 9 c-Iminoethano- phenanthro
	[4, 5-b, c, d] furan ring systems condensed with carbocyclic rings or ring systems
489/10	• • with a bridge between positions 6 and 14
489/12	the bridge containing only two carbon atoms
491/00	Heterocyclic compounds containing in the
	condensed ring system both one or more rings
	having oxygen atoms as the only ring hetero atoms

condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D 451/00 - C07D 459/00, C07D 463/00, C07D 477/00 or C07D 489/00

491/02	. in which the condensed system contains two hetero
	rings
491/04	Ortho-condensed systems
491/044	• • • with only one oxygen atom as ring hetero atom
	in the oxygen-containing ring
491/048	• • • • the oxygen-containing ring being five-
	membered
491/052	• • • • the oxygen-containing ring being six-
	membered
491/056	• • • with two or more oxygen atoms as ring hetero
	atoms in the oxygen-containing ring
491/06	• Peri-condensed systems
491/08	• Bridged systems
491/10	• • Spiro-condensed systems
491/107	• • • with only one oxygen atom as ring hetero atom
., 1, 10,	in the oxygen-containing ring
491/113	• • with two or more oxygen atoms as ring hetero
., .,	atoms in the oxygen-containing ring
491/12	• in which the condensed system contains three hetero
., .,	rings
491/14	• Ortho-condensed systems
491/147	• • the condensed system containing one ring with
471/147	oxygen as ring hetero atom and two rings with
	nitrogen as ring hetero atom
491/153	the condensed system containing two rings
., 1, 100	with oxygen as ring hetero atom and one ring
	with nitrogen as ring hetero atom
491/16	• Peri-condensed systems
491/18	Bridged systems
491/20	Spiro-condensed systems
491/22	 in which the condensed systems contains four or
471/22	more hetero rings
	more netero migo
493/00	Heterocyclic compounds containing oxygen atoms
493/00	Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed
493/00	Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
493/00 493/02	Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed
493/02	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems
493/02	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
493/02 493/04	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Bridged systems
493/02 493/04 493/06 493/08 493/10	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems
493/02 493/04 493/06 493/08	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Bridged systems
493/02 493/04 493/06 493/08 493/10	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems
493/02 493/04 493/06 493/08 493/10	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems in which the condensed system contains three hetero
493/02 493/04 493/06 493/08 493/10 493/12	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems in which the condensed system contains three hetero rings
493/02 493/04 493/06 493/08 493/10 493/12 493/14	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems in which the condensed systems in which the condensed systems ortho-condensed systems ortho-condensed systems
493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems in which the condensed systems in which the condensed systems Peri-condensed systems Peri-condensed systems Peri-condensed systems Peri-condensed systems Peri-condensed systems Peri-condensed systems
493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16 493/18	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems Bridged systems Spiro-condensed systems in which the condensed systems in which the condensed systems Ortho-condensed systems Peri-condensed systems Bridged systems Bridged systems Bridged systems
493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16 493/18 493/20	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems Bridged systems Spiro-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems Bridged systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems
493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16 493/18 493/20 493/22	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems in which the condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems Bridged systems Spiro-condensed systems Spiro-condensed systems Bridged systems spiro-condensed systems in which the condensed system contains four or more hetero rings
493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16 493/18 493/20	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems in which the condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems Bridged systems Spiro-condensed systems Bridged systems Spiro-condensed systems in which the condensed systems Bridged systems Spiro-condensed systems in which the condensed system contains four or more hetero rings
493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16 493/18 493/20 493/22	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems in which the condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems Bridged systems Peri-condensed systems Spiro-condensed systems Bridged systems Spiro-condensed systems in which the condensed systems in which the condensed systems In the condensed systems In which the condensed system contains four or more hetero rings
493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16 493/18 493/20 493/22 495/00	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems Bridged systems Peri-condensed systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems in which the condensed systems Spiro-condensed systems in which the condensed systems In the condensed systems In which the condensed system contains four or more hetero rings
493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16 493/18 493/20 493/22	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems in which the condensed systems Ortho-condensed systems Bridged systems Ortho-condensed systems Bridged systems Spiro-condensed systems Bridged systems Spiro-condensed systems Bridged systems Spiro-condensed systems In which the condensed system contains four or more hetero rings Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero
 493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16 493/18 493/20 493/22 495/00 495/02 	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Bridged systems Spiro-condensed system contains three hetero rings Ortho-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems Bridged systems Peri-condensed systems Bridged systems Spiro-condensed systems Bridged systems Spiro-condensed systems in which the condensed systems Bridged systems Spiro-condensed systems in which the condensed system contains four or more hetero rings Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
 493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16 493/18 493/20 493/22 495/00 495/02 495/04 	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems Peri-condensed systems Peri-condensed systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems In which the condensed systems Spiro-condensed systems In which the condensed systems in which the condensed system contains four or more hetero rings Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
 493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16 493/18 493/20 493/22 495/00 495/02 495/04 495/06 	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems in which the condensed systems Peri-condensed systems Peri-condensed systems Bridged systems Ortho-condensed systems Bridged systems Spiro-condensed systems Bridged systems Spiro-condensed systems Bridged systems Spiro-condensed systems in which the condensed system contains four or more hetero rings Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed systems Ortho-condensed systems Perior condensed systems Perior condensed system contains two hetero rings
 493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16 493/18 493/20 493/22 495/00 495/02 495/04 495/06 495/08 	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems in which the condensed systems Peri-condensed systems Ortho-condensed systems Peri-condensed systems Spiro-condensed systems Bridged systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems in which the condensed systems Spiro-condensed systems in which the condensed system contains four or more hetero rings Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed systems Ortho-condensed systems Ortho-condensed systems Peri-condensed systems Peri-condensed systems Bridged systems Peri-condensed systems Bridged systems Bridged systems
493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16 493/18 493/20 493/22 495/00 495/02 495/02 495/04 495/06 495/08 495/10	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Bridged systems Spiro-condensed systems in which the condensed systems Spiro-condensed systems in which the condensed systems Ortho-condensed systems Ortho-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems Bridged systems Spiro-condensed systems Spiro-condensed systems In which the condensed system contains four or more hetero rings Keterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed systems Ortho-condensed systems Ortho-condensed systems Spiro-condensed systems Bridged systems Ortho-condensed systems Bridged systems Spiro-condensed systems Bridged systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems
 493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16 493/18 493/20 493/22 495/00 495/02 495/04 495/06 495/08 	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems in which the condensed systems Peri-condensed systems Peri-condensed systems Spiro-condensed systems Peri-condensed systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems in which the condensed system contains four or more hetero rings Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed systems Ortho-condensed systems Spiro-condensed systems Peri-condensed systems Bridged systems Spiro-condensed systems
493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16 493/18 493/20 493/22 495/00 495/02 495/02 495/02 495/04 495/08 495/10 495/12	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems Bridged systems Peri-condensed systems Bridged systems Spiro-condensed systems Bridged systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems In which the condensed system contains four or more hetero rings Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms In which the condensed systems In which the condensed systems Spiro-condensed systems In which the condensed systems Spiro-condensed systems In which the condensed systems Spiro-condensed systems Spiro-condensed systems In which the condensed systems
493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16 493/18 493/20 493/22 495/00 495/02 495/02 495/04 495/02 495/04 495/08 495/10 495/12 495/14	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems Bridged systems Peri-condensed systems Bridged systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems in which the condensed system contains four or more hetero rings Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed systems Spiro-condensed systems Ortho-condensed systems Spiro-condensed systems Ortho-condensed systems Ortho-condensed systems Ortho-condensed systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems Spiro-condensed systems Spiro-condensed systems Ortho-condensed systems Ortho-condensed systems Ortho-condensed systems Ortho-condensed systems Spiro-condensed systems Ortho-condensed systems Northo-condensed systems Ortho-condensed systems
493/02 493/04 493/06 493/08 493/10 493/12 493/14 493/16 493/18 493/20 493/22 495/00 495/02 495/02 495/02 495/04 495/08 495/10 495/12	 Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings Ortho-condensed systems Peri-condensed systems Spiro-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems in which the condensed system contains three hetero rings Ortho-condensed systems Bridged systems Peri-condensed systems Bridged systems Spiro-condensed systems Bridged systems Spiro-condensed systems Spiro-condensed systems Spiro-condensed systems In which the condensed system contains four or more hetero rings Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms In which the condensed systems In which the condensed systems Spiro-condensed systems In which the condensed systems Spiro-condensed systems In which the condensed systems Spiro-condensed systems Spiro-condensed systems In which the condensed systems

C07D

495/18	• • Bridged systems	499/14	. Preparation of salts
495/20	Spiro-condensed systems	499/16	• • • of alkali or alkaline earth metals
495/22	• in which the condensed system contains four or	499/18	• • Separation; Purification
	more hetero rings	499/20	• • via salts with organic bases
407/00	Hatana analia aomenana da containin a in tha	499/21	• with a nitrogen atom directly attached in position
497/00	Heterocyclic compounds containing in the condensed system at least one hetero ring having		6 and a carbon atom having three bonds to hetero
	oxygen and sulfur atoms as the only ring hetero		atoms with at the most one bond to halogen, e.g. an
	atoms		ester or nitrile radical, directly attached in position 2
497/02	• in which the condensed system contains two hetero	499/22	• • Salts with organic bases; Complexes with organic
47/102	rings		compounds
497/04	• Ortho-condensed systems	499/24	• • • with acyclic or carbocyclic compounds
497/06	Peri-condensed systems		containing amino radicals
497/08	Bridged systems	499/26	• • • with heterocyclic compounds
497/10	Spiro-condensed systems	499/28	• • with modified 2-carboxyl group
497/12	 in which the condensed systems contains three hetero 	499/30	Acid anhydride
47/112	rings	499/32	Esters
497/14	• Ortho-condensed systems	499/34	Thio-acid; Esters thereof
497/16	Peri-condensed systems	499/36	O-esters
497/18	Bridged systems	499/38	S-esters
497/20	Spiro-condensed systems	499/40	Amides; Hydrazides; Azides
497/22	 in which the condensed system contains four or 	499/42	. Compounds with a free primary amino radical
491122	more hetero rings		attached in position 6
	more neuro migs	499/44	. Compounds with an amino radical acylated by
498/00	Heterocyclic compounds containing in the		carboxylic acids, attached in position 6
	condensed system at least one hetero ring having	499/46	• • • with acyclic hydrocarbon radicals or such
	nitrogen and oxygen atoms as the only ring hetero		radicals substituted by carbocyclic or
	atoms (4-oxa-1-azabicyclo [3.2.0] heptanes, e.g.		heterocyclic rings, attached to the carboxamido
	oxapenicillins <u>C07D 503/00</u> ; 5-oxa-1-azabicyclo		radical
	[4.2.0] octanes, e.g. oxacephalosporins <u>C07D 505/00;</u>	499/48	• • • with a carbon chain, substituted by hetero
	analogues thereof having ring oxygen atoms in other position C07D 507/00)		atoms or by carbon atoms having three bonds
108/02			to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, attached to
498/02	 in which the condensed system contains two hetero rings 		the carboxamido radical
498/04	• Ortho-condensed systems	499/50	• • • • substituted in beta-position to the
498/04	Peri-condensed systems	477/50	carboxamido radical
498/08	Bridged systems	499/52	• • • • by oxygen or sulfur atoms
498/10	Spiro-condensed systems	499/54	by nitrogen atoms
498/12	 in which the condensed system contains three hetero 	499/56	••••••••••••••••••••••••••••••••••••••
470/12	rings	177750	hetero atoms with at the most one bond to
498/14	• Ortho-condensed systems		halogen
498/16	Peri-condensed systems	499/58	• • • substituted in alpha-position to the
498/18	Bridged systems		carboxamido radical
498/20	Spiro-condensed systems	499/60	•••• by oxygen atoms
498/20	 in which the condensed system contains four or 	499/62	•••• by sulfur atoms
490/22	more hetero rings	499/64	• • • • by nitrogen atoms
	more neuro migs	499/66	••••• with alicyclic rings as additional
499/00	Heterocyclic compounds containing 4-thia-1-		substituents on the carbon chain
	azabicyclo [3.2.0] heptane ring systems, i.e.	499/68	•••••• with aromatic rings as additional
	compounds containing a ring system of the		substituents on the carbon chain
	formula:	499/70	•••••• with hetero rings as additional
			substituents on the carbon chain
	formula:	499/72	by carbon atoms having three bonds to
	Such ring systems being further condensed, e.g.		hetero atoms
	2,3-condensed with an oxygen-, nitrogen- or sulfur-	499/74	with carbocyclic rings directly attached to the
	containing hetero ring		carboxamido radical
499/04	• Preparation	499/76	• • • with hetero rings directly attached to the
499/06	• • by forming the ring or condensed ring systems		carboxamido radical
	(by microbiological processes C12P 37/00)	499/78	• Compounds with an amino radical, acylated by
499/08	• • Modification of a carboxyl radical directly		carbonic acid, or by nitrogen or sulfur analogues
	attached in position 2, e.g. esterification	<u>.</u>	thereof, attached in position 6
499/10	Modification of an amino radical directly attached	499/80	. Compounds with a nitrogen-containing hetero
	in position 6		ring, attached with the ring nitrogen atom in
499/12	Acylation		position 6

499/86	• with only atoms other than nitrogen atoms directly attached in position 6 and a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical,
	directly attached in position 2
499/861	• • with a hydrocarbon radical or a substituted
	hydrocarbon radical, directly attached in position 6
499/865	• with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 6
499/87	• Compounds being unsubstituted in position 3 or with substituents other than only two methyl radicals attached in position 3, and with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2
499/88	• Compounds with a double bond between positions 2 and 3 and a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2
499/881	• with a hydrogen atom or an unsubstituted hydrocarbon radical, attached in position 3
499/883	• with a substituted hydrocarbon radical attached in position 3
499/887	• with a hetero atom or a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 3
499/893	• with a hetero ring or a condensed hetero ring system, directly attached in position 3
499/897	• Compounds with substituents other than a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, directly attached in position 2
499/90	• further condensed with carbocyclic rings or ring systems
501/00	Heterocyclic compounds containing 5-thia-1-
	azabicyclo [4.2.0] octane ring systems, i.e.
	compounds containing a ring system of the
	formula: S , e.g. cephalosporins;
	formula: $C_{\overline{7}} C_{\overline{6}} C_{\overline{5}} C_{\overline{4}}$, e.g. cepnatosportns; $ _{8} _{1} C_{\overline{7}} C_{\overline{6}} C_{\overline{4}}$
	Such ring systems being further condensed, e.g.
	2,3-condensed with an oxygen-, nitrogen- or sulfur-
	containing hetero ring
501/02	• Preparation
501/04	from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or modification of substituents
501/06	Acylation of 7-aminocephalosporanic acid
501/08	• by forming the ring or condensed ring systems (by microbiological processes <u>C12P 35/00</u>)
501/10	• • from compounds containing the penicillin ring system
501/12	Separation; Purification
501/14	• Compounds having a nitrogen atom directly attached in position 7

501/18	•	•	•		Aminocephalosporanic or substituted 7- ninocephalosporanic acids
501/20	•	•	•	7-	Acylaminocephalosporanic acids or substituted 7- cylaminocephalosporanic acids in which the
					cyl radicals are derived from carboxylic acids
501/22	•	•	•	•	with radicals containing only hydrogen and carbon atoms, attached in position 3
501/24	•	•	•	•	with hydrocarbon radicals, substituted by
					hetero atoms or hetero rings, attached in position 3
501/26					• Methylene radicals, substituted by oxygen
					atoms; Lactones thereof with the 2-
501/20					carboxyl group
501/28	•	•	•	•	• with the 7-amino radical acylated by an aliphatic carboxylic acid, which is substituted by hetero atoms
501/30					• with the 7-amino-radical acylated by an
					araliphatic carboxylic acid
501/32	•	•	•	•	• • with the 7-amino radical acylated by
					an araliphatic carboxylic acid, which is substituted on the aliphatic radical by
					hetero atoms
501/34	•		•	•	• • with the 7-amino radical acylated by
					carboxylic acids containing hetero rings
501/36	•	•	•	•	• Methylene radicals, substituted by sulfur
501/38					Methylene radicals, substituted by nitrogen
001,00	•	·	•	•	atoms; Lactams thereof with the 2-
					carboxyl group; Methylene radicals
					substituted by nitrogen-containing hetero rings attached by the ring nitrogen atom;
					Quaternary compounds thereof
501/40	•		•	•	• • with the 7-amino radical acylated by
					an aliphatic carboxylic acid, which is
501/42					substituted by hetero atomswith the 7-amino radical acylated by an
501/42	•	•	•	•	araliphatic carboxylic acid
501/44	•	•	•	•	• • with the 7-amino radical acylated by
					an araliphatic carboxylic acid, which is substituted on the aliphatic radical by
					hetero atoms
501/46	•	•	•	•	• • with the 7-amino radical acylated by
501/40					carboxylic acids containing hetero rings
501/48	•	•	•	•	• Methylene radicals, substituted by hetero rings (<u>C07D 501/38</u> - <u>C07D 501/46</u> take
					precedence)
501/50	•	•	•	•	• • with the 7-amino radical acylated by
					an aliphatic carboxylic acid, which is
501/52					substituted by hetero atomswith the 7-amino radical acylated by an
					araliphatic carboxylic acid
501/54	•	•	•	•	• • with the 7-amino radical acylated by
					an araliphatic carboxylic acid, which is substituted on the aliphatic radical by
					hetero atoms
501/56	•		•	•	• • with the 7-amino radical acylated by
501/55					carboxylic acids containing hetero rings
501/57	•	•	•	•	with a further substituent in position 7, e.g. cephamycines
501/58	•		•	w	ith a nitrogen atom, which is a member of a
				he	etero ring, attached in position 7
501/59	•	•	•	w 3	ith hetero atoms directly attached in position
501/60			w		a double bond between positions 3 and 4
	-	•			r state in the second state is second state in the second state in the second state is second state in the second state in

501/16

attached in position 7

. . with a double bond between positions $2 \mbox{ and } 3$

С	0	7	1	D
\cdot	v		-	-

	······································	
501/62	• Compounds further condensed with a carbocyclic ring or ring system	5
503/00	Heterocyclic compounds containing 4-oxa-1- azabicyclo [3.2.0] heptane ring systems, i.e.	5
	compounds containing a ring system of the formula: $C \xrightarrow{6} C \xrightarrow{5} 4 \xrightarrow{3} C$, e.g. oxapenicillins, $ C \xrightarrow{6} 1 \xrightarrow{2} $	
		5
	clavulanic acid derivatives; Such ring systems	_
	being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring	5
503/02	 Preparation (by microbiological processes C12P 17/18) 	5
503/04	by forming the ring or condensed ring systems	
503/06	• from compounds already containing the ring or condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or	5
	modification of substituents	-
503/08	Modification of a carboxyl group directly attached in position 2, e.g. esterification	5
503/10	• with a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, e.g. an	5
500/10	ester or nitrile radical, directly attached in position 2	U
503/12	• unsubstituted in position 6	_
503/14	••• with hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, other than a carbon atom having three bonds to hetero	5
	atoms with at the most one bond to halogen, attached in position 3	
503/16	Radicals substituted by hetero atoms or by carbon atoms having three bonds to hetero	5
	atoms with at the most one bond to halogen,	5
502/19	e.g. an ester or nitrile radical	5
503/18 503/20	by oxygen atoms	5
503/20	• • • • by suma atoms	5 5
		3
505/00	Heterocyclic compounds containing 5-oxa-1-	5
	azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the	5
		5
	$\Gamma_{7} \Gamma_{6} \Gamma_{5} \Gamma_{4} \Gamma_{5}$	5
	formula: $\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	5
	Such ring systems being further condensed, e.g.	5
	2,3-condensed with an oxygen-, nitrogen- or sulfur-	-
505/02	 containing hetero ring Preparation (by microbiological processes C12P 17/18) 	
505/04	• • by forming the ring or condensed ring systems	
505/06	• from compounds already containing the ring or	5
	condensed ring systems, e.g. by dehydrogenation of the ring, by introduction, elimination or	5
505/08	 modification of substituents Modification of a carboxyl group directly attached in position 2, e.g. esterification 	5 5
505/10	 with a carbon atom having three bonds to hetero 	5
505/10	atoms with at the most one bond to halogen, e.g. an ester or nitrile radical, directly attached in position 2	5
505/12	• • substituted in position 7	5
505/14	• • • with hetero atoms directly attached in position 7	5 5
505/16	Nitrogen atoms	5

505/18	further acylated by radicals derived from
	carboxylic acids or by nitrogen or sulfur analogues thereof
505/20	• • • • • • with the acylating radicals further
	substituted by hetero atoms or by carbon
	atoms having three bonds to hetero
	atoms with at the most one bond to
505/22	halogen
505/22	further substituted by singly-bound nitrogen atoms
505/24	••••••••••••••••••••••••••••••••••••••
000/21	nitrogen atoms
507/00	Heterocyclic compounds containing a condensed
	beta-lactam ring system, not provided for by groups C07D 463/00, C07D 477/00 or
	by groups <u>C07D 463/00</u> , <u>C07D 477/00</u> or <u>C07D 499/00</u> - <u>C07D 505/00</u> ; Such ring systems
	being further condensed
507/02	• containing 3-oxa-1-azabicyclo [3.2.0] heptane ring
	systems
507/04	 containing 2-oxa-1-azabicyclo [4.2.0] octane ring systems
507/06	 containing 3-oxa-1-azabicyclo [4.2.0] octane ring
	systems
507/08	• containing 4-oxa-1-azabicyclo [4.2.0] octane ring
	systems
513/00	Heterocyclic compounds containing in the
	condensed system at least one hetero ring having
	nitrogen and sulfur atoms as the only ring hetero
	atoms, not provided for in groups <u>C07D 463/00</u> , <u>C07D 477/00</u> or <u>C07D 499/00</u> - <u>C07D 507/00</u>
513/02	• in which the condensed system contains two hetero
	rings
513/04	Ortho-condensed systems
513/06	• Peri-condensed systems
513/08	Bridged systems
513/10	Spiro-condensed systems
513/12	• in which the condensed system contains three hetero
513/14	rings . Ortho-condensed systems
513/14	Peri-condensed systems
513/18	Bridged systems
513/20	Spiro-condensed systems
513/22	• in which the condensed system contains four or
	more hetero rings
515/00	Heterocyclic compounds containing in the
	condensed system at least one hetero ring
	having nitrogen, oxygen, and sulfur atoms
	as the only ring hetero atoms, not provided
	for in groups <u>C07D 463/00</u> , <u>C07D 477/00</u> or C07D 400/00 <u>C07D 507/00</u>
515/02	<u>C07D 499/00</u> - <u>C07D 507/00</u> • in which the condensed system contains two hetero
515/02	rings
515/04	• Ortho-condensed systems
515/06	Peri-condensed systems
515/08	Bridged systems
515/10	• • Spiro-condensed systems
515/12	• in which the condensed system contains three hetero
E1E/14	rings
515/14	Ortho-condensed systems
515/16 515/18	Peri-condensed systemsBridged systems
515/18	Spiro-condensed systems
515/20	• • opno-condensed systems

. in which the condensed system contains four or

515/22

515/22	more hetero rings
517/00	Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
517/02	• in which the condensed system contains two hetero rings
517/04	Ortho-condensed systems
517/06	Peri-condensed systems
517/08	Bridged systems
517/10	Spiro-condensed systems
517/12	• in which the condensed system contains three hetero rings
517/14	. Ortho-condensed systems
517/16	. Peri-condensed systems
517/18	Bridged systems
517/20	Spiro-condensed systems
517/22	• in which the condensed system contains four or more hetero rings
519/00	Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups <u>C07D 453/00</u> or <u>C07D 455/00</u>
519/02	• Ergot alkaloids of the cyclic peptide type
519/04	. Dimeric indole alkaloids, e.g. vincaleucoblastine
519/06	 containing at least one condensed beta-lactam ring system, provided for by groups <u>C07D 463/00</u>, <u>C07D 477/00</u> or <u>C07D 499/00</u> - <u>C07D 507/00</u>, e.g. a penem or a cepham system
521/00	Heterocyclic compounds containing unspecified

hetero rings

<u>NOTE</u>

This group is only used for the classification of heterocyclic compounds the chemical structure of which are not specified, i.e. only in those cases where the heterocyclic compounds cannot be classified in any of groups $C07D \ 201/00$ - $C07D \ 519/00$.