U. S. DEPARTMENT OF COMMERCE Patent and Trademark Office

CLASSIFICATION ORDER 1842

MARCH 1, 2005

Project No. E-6725

The following classification changes will be effected by this order:

	<u>Class</u>	<u>Subclass</u>	Art <u>Unit</u>	Ex'r Search <u>Room No.</u>
Established:	704	256.1-256.8	2654	None

The following classes are also impacted by this order.

Classes: None

This order includes the following:

- A. CLASSIFICATION MANUAL CHANGES;
- C. CHANGES TO THE U.S. I.P.C. CONCORDANCE;
- D. DEFINITION CHANGES AND NEW OR ADDITIONAL DEFINITIONS

CLASSIFICATION ORDER 1842

MARCH 1, 2005

Project No. E-6725

Project Leader:	Tuan D. Nguyen
Examiner(s):	Michael Opsasnick
Editor:	James E. Doyle, Jr.

CLASS 704 DATA PROCESSING: SPEECH SIGNAL PROCESSING, LINGUISTICS, LANGUAGE TRANSLATION, AND AUDIO COMPRESSION/DECOMPRESSION

•

704-1

1990 - 24 6 y 1. 6 y 1. 6 y 1. 6 y 1. 6 y

MARCH 2005

1	LINGUISTICS	249	Subportions
2	.Translation machine	250	Specialized models
3	Having particular Input/Output device	251	Word recognition
4	Based on phrase, clause, or idiom	252	Preliminary matching
5	For partial translation	253	Endpoint detection
6	Punctuation	254	
7	Storage or retrieval of data	255	Specialized models
8	.Multilingual or national language	256	Markov
-	support	* 256 1	Hiddon Markow Model (UBK) (TDO)
9	.Natural language	* 256 2	Training of UNG (EPO)
10	Dictionary building, modification, or	* 256 2	With insufficient country (
	prioritization	230.3	training data or gtate
200	SPEECH SIGNAL PROCESSING		sharing, tying, deleted
200.1	.Psychoacoustic		interpolation (EPO)
201	.For storage or transmission	* 256.4	Duration modeling in HMM, e.g.,
202	.Neural network		semi HMM, segmental models,
203	Transformation		transition probabilities (EPO)
204	Orthogonal functions	* 256.5	Hidden Markov (HM) network (EPO)
205	. Frequency	* 256.6	State emission probability (EPO)
206	Specialized information	* 256.7	Continuous density, e.g, Gaussian
200	Pitch		distribution, Lapalce (EPO)
202	Voigod or unvoigod	* 256.8	Discrete density, e.g., Vector
200	Formant		Quantization preprocessor,
200	Silongo dogigion		look up tables (EPO)
210		257	Natural language
211	Dulco codo modulativo (DCM)	258	.Synthesis
212	Pulse code modulation (PCM)	259	Neural network
213	Zero crossing	260	Image to speech
214	Volcea or unvolcea	261	Vocal tract model
215	Silence decision	262	Linear prediction
216	Correlation function	263	Correlation
217	Autocorrelation	264	Excitation
218	Cross-correlation	265	Interpolation
219	Linear prediction	266	Specialized model
220	Analysis by synthesis	267	
221	Pattern matching vocoders	268	Frequency element
222	Vector quantization	269	Transformation
223	Excitation patterns	270	.Application
224	Normalizing	270.1	Speech assisted network
225	Gain control	271	.Handicap aid
226	Noise	272	Novelty item
227	Pretransmission	273	Security system
228	Post-transmission	274	Warning/alarm system
229	Adaptive bit allocation	275	Speech controlled system
230	Quantization	276	Pattern dignlay
231	Recognition	270	Translation
232	Neural network	277	Cound oditing
233	Detect speech in noise	500	MIDIO GIONNE DANDAIDONE GOMPDEGGION OF
234	Normalizing	500	AUDIO SIGNAL BANDWIDTH COMPRESSION OR
235	Speech to image	501	With content reduction encoding
236	Specialized equations or comparisons	501	Palay line
237	Correlation	502	Delay IIIe
238	Distance	503	AUDIO SIGNAL TIME COMPRESSION OR
230	Similarity	504	With append adduction and diag
233	Duch chility	504	with content reduction encoding
240	Probability		**********
241	Dynamic time warping		FOREIGN ART COLLECTION
242	Viterbi trellis		* * * * * * * * * * * * * * * * * * * *
243	Creating patterns for matching	FOR 000	CLASS-RELATED FOREIGN DOCUMENTS
244	Update patterns		
245	Clustering		
246	Voice recognition		
247	Preliminary matching		
248	Endpoint detection		

Title Change
* Newly Established Subclass

CLASSIFICATION ORDER 1842

MARCH 1, 2005

Project No. E-6725

C. <u>CHANGES TO THE U.S. - I.P.C. CONCORDANCE</u>

U.S.		I.P.C.		ECLA	
<u>Class</u>	Subclass	Subclass	Notation	Subclass	Notation
704 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2: 2	256.1	G10L	15/14	G10L	15/14M
	256.2	G10L	15/14	G10L	15/14M1
	256.3	G10L	15/14	G10L	15/14M1S
	256.4	G10L	15/14	G10L	15/14M2
	256.5	G10L	15/14	G10L	15/14M3
	256.6	G10L	15/14	G10L	15/14M4
	256.7	G10L	15/14	G10L	15/14M4C
	256.8	G10L	15/14	G10L	15/14M4D
	256.8	G10L G10L	15/14	G10L G10L	15/14M4

CLASS 704 - DATA PROCESSING: SPEECH SIGNAL PROCESSING, LINGUISTICS, LANGUAGE TRANSLATION, AND AUDIO COMPRESSION/DECOMPRESSION

Definitions Established:

256.1 Hidden Markov Model (HMM) (EPO):

Subject matter under subclass 256 wherein a Markov chain used in the recognition process has un-observable (hidden) states.

- (1) Note. The observation model itself is part of the stochastic process (Markov Chain) with an underlying stochastic process that is not directly observable, but can be observed through a set of stochastic processes that produce the sequence of observations.
- (2) Note. The HMM has different elements, including the following number of states, the number of distinct observations per state, state transition probability distribution, the observation symbol probability distribution, and the initial state distribution.
- (3) Note. The manipulation of HMM's can be use in improving the probability of observation sequences, optimizing state sequences, or maximizing the probability of the state sequences.
- (4) Note. Subcategories to the types of HMM's include finite state, discrete versus continuous, mixture densities, autoregressive, null transition, tied states, and state duration.
- (5) Note. Included in this subclass are the foreign patent documents from ECLA (G10L 15/14M).

256.2 Training of HMM (EPO):

Subject matter under subclass 256.1 wherein the models include a learning process for recognizing speech data, e.g., the construction of a library of models for the words in a vocabulary, including the states.

(1) Note. Included in this subclass are the foreign patent documents from ECLA (G10L 15/14M1).

256.3 With insufficient amount of training data, e.g., state sharing, tying, and deleted interpolation (EPO):

Subject matter under 256.2 wherein intrinsic parameters of the HMM are modified to overcome lack of training data, and to simplify the model, e.g., state sharing, tying, and deleted interpolation.

(1) Note. State sharing involves combining two or more separately trained models, one of which is more reliably trained than the other. The scenario in which this can happen is the case when we use tied states which forces "different" states to

share an identical statistical characterization, effectively reducing the number of parameters in the model.

- (2) Note. Parameter tying involves setting up an equivalence relation between HMM parameters in different states. In this manner the number of independent parameters in the model is reduced and the parameter estimation becomes somewhat simpler and in some cases more reliable. Parameter tying is used when the observation density, for example, is known to be the same in two or more states.
- (3) Note. Deleted interpolation is a parameter method aimed to improve model reliability. The concept involves combining two or more separately trained models, one of which is more reliably trained than the other. The scenario in which this can happen is the case when we use tied states which forces "different" states to share an identical statistical characterization, effectively reducing the number of parameters in the model. The technique of deleted interpolation has been successfully applied to a number of problems in speech recognition, including the estimation of trigram word probabilities for language models, and the estimation of HMM output probabilities for trigram phone models.
- (4) Note. Included in this subclass are the foreign patent documents from ECLA (G10L 15/14M1S).

256.4 Duration modeling in HMM, e.g., semi HMM, segmental models, transition probabilities (EPO):

Subject matter under 256.1 wherein the HMM includes a duration state model for speech recognition, e.g., semi HMM's, segmental models, and transition probabilities.

- (1) Note. A semi- Markov HMM is like an HMM except each state can emit a sequence of observations.
- (2) Note. Within a state segment models introduce dependency between frames via their common dependence on a trajectory. There may be only a single trajectory or a continuous mixture of trajectories. The probability distribution over the sequence of frames for a state, given the duration and trajectory, is then typically modeled as independent Gaussian distributions for each time step, centered on the trajectory.
- (3) Note. Symbol emission probabilities are associated to the states and transition probabilities to the connections between them.
- (4) Note. Included in this subclass are the foreign patent documents from ECLA (G10L 15/14M2).

256.5 Hidden Markov (HM) Network (EPO):

Subject matter under 256.1 including a HMM structure wherein subgroups of HMM types are used to perform speech recognition.

- (1) Note. Each subgroup can vary by type of model, model size, and observation symbols.
- (2) Note. Included in this subclass are the foreign patent documents from ECLA (G10L 15/14M3).

256.6 State Emission Probability (EPO):

Subject matter under 256.1 wherein the HMM contains probability density function such that an emission probability is calculated for each state within the model.

- (1) Note. For each state j, and for each possible output, a probability that a particular output symbol o is observed in that state. This is represented by the function b_j (o), which gives the probability that o is emitted in state j. This is called the emission probability.
- (2) Note. Included in this subclass are the foreign patent documents from ECLA (G10L 15/14M4).

256.7 Continuous density, e.g., Gaussian distribution, Laplace (EPO):

Subject matter under 256.6 wherein the HMM contains continuous probability density observation models for the purpose of avoiding possible signal degradation inherent with discrete representations of signals.

- (1) Note. Included in this subclass are the foreign patent documents from ECLA (G10L 15/14M4C).
- **256.8** Discrete density, e.g., Vector Quantization preprocessor, look up tables (EPO): Subject matter under 256.6 wherein the HMM contains discrete probability density observation models which allows for the use of a discrete probability density within each state of the model.
 - (1) Note. Discrete probability density is used when the state of the model is discrete (e.g. representing a letter of the alphabet). Vector quantization is used to model its state.
 - (2) Note. Included in this subclass are the foreign patent documents from ECLA (G10L 15/14M4D).