
From: Jay Sulzberger [e-mail redacted] 
Sent: Monday, September 27, 2010 11:53 PM 
To: Bilski_Guidance 
Cc: [e-mail redacted] 
Subject: On Software Patents 

Dear USPTO, 

I write to express opposition to the granting of patents on software. 

The arguments against software being patentable are many.  I repeat here two 
arguments. The first argument has rubric and slogan "Software is mathematics 
and thus cannot be patented.". 

This argument is powerfully persuasive to many programmers and 
mathematicians. Indeed most in these trades, when they hear or discover for 
themselves the slogan, consider the slogan form of the argument sufficient, and 
their opinion of the issue is settled at that moment.  I wish to call attention to the 
great force of the argument and its tremendous and growing field of application. 

Modern digital computers were discovered at least twice, both times by 
mathematicians. First, Charles Babbage in 1837 proposed a design for a digital 
computer, which computer was intended to calculate anything that could be 
calculated by any algorithm whatsoever.  Second, a body of logicians and 
mathematicians of the period 1850-1940 engaged in a large attempt at 
understanding mathematical infinity and the meanings of mathematical truth and 
mathematical proof. Near the end of this period several different designs for a 
digital computer were published, with arguments that such computers really 
could perform any task for which an algorithm is available.  Mathematicians, 
logicians, probabilists, and engineers together then, from 1940 to 1950, built 
such general purpose computers.  The general purpose computer is a very 
astonishing machine. It is different in kind from any machine ever built before by 
human beings. Any general purpose computer can do what any special purpose 
calculating device can do, when the general purpose computer is fed the proper 
program. For this reason logicians call a general purpose computer a "universal 
machine". 

Now the Patent Office considers that no "general concept" can be patented.  
Today an ordinary digital computer, such as the one into whose memory I am 
typing these words, is an instantiation of the general concept "universal machine". 
Though various material components, and many of the processes which 
produced them, are patented, yet there is no patent on the general concept of a 
universal machine.  And this is right. Such a patent would give to the patent 
holder a legal monopoly on all ordinary computers, and just about all devices for 
electronic communication, such as telephones, radios, televisions, etc.. 



Once one has a material instantiation of the universal machine, that is, a 
computer, then one has a method for taking any algorithm and running the 
algorithm on the computer. Or, more precisely, once you have written a program, 
in a specific computer language, then any compiler/interpreter running on any 
hardware is sufficient to perform the steps of the algorithm.  No specific compiler, 
no specific interpreter, no specific hardware is required.  The only specification is 
that they work together so as to run the program.  Starting on page 3 of the pdf 
file 

http://www.uspto.gov/patents/law/exam/bilski_guidance_27jul2010.pdf 

is a section called "101 Method Eligibility Quick Reference Sheet".  In the 
subsection called "Factors Weighing against Eligibility" we have this factor 
against eligibility to be 
patented: 

  Insufficient recitation of a machine or transformation. 

   Machine is generically recited such that it covers any machine capable 
    of performing the claimed step(s) 

Every "computer program" meets this factor against eligibility. 
The point of computer programming systems, such as compilers and interpreters, 
is that they mediate between particular fixed expressions of algorithms, that is to 
say programs, and one or more particular instantiations of the "universal 
machine". There is no particular requirement on the machine that is to run the 
program beyond the generic requirement that the software/hardware actually be 
able to run the program. We are squarely, deeply, in the center of this factor 
against eligibility. 

Thus today, if the Patent Office follows its own guidelines, no computer program 
is patentable. 

The second argument against granting patents on software is made by several 
other commentators. This argument would stand even if the Patent Office were 
to drop the "insufficient recitation of a machine or transformation" factor against 
patent eligibility. 

As written today much software is a work of bricolage.  Bits of programs and 
whole programming systems are welded together to make a program.  Often 
most of these bits and systems are written by people other than those who 
produce the program. For example, Google has several large systems, which 
might be considered as single programs. The majority of the code in these 
programs was not written by Google.  Rather this code by other authors was 
assembled by Google and made part of the Google systems.  Much of this code 

http://www.uspto.gov/patents/law/exam/bilski_guidance_27jul2010.pdf


was published under a free license, such as the GNU General Public License, 
the Revised BSD License, the Apache License.  This code is copyrighted, and 
many who are against software patents are happy to copyright the code they 
write and make it available under a free license.  Such code is called "free 
software". 

Because of this extraordinary degree of bricolage and assembly of code written 
by others, the granting of software patents would allow rich patent holders to 
suppress much use of free software. 
The mechanism of suppression would work as follows: because most large free 
software systems, such as the GNU/Linux operating system, are composed of 
thousands of pieces of code written by hundreds of people, the user could not be 
sure that every piece was non-infringing.  Thus businesses and other 
organizations would be dissuaded from using the GNU/Linux OS. 

But even if software is made available under a restrictive license, even if it is a 
trade secret, yet almost every body of code would infringe on some software 
patents if software patents were granted. (Support for this statement requires an 
analysis of the differences between development of ordinary 
machinery/processes/materials and the development of software; please accept 
my apology for not including such analysis in this 
note.) Thus software patents would damage not only authors and users of free 
software, but also authors and users of any software, because a patent suit can 
always be brought by a rich patent holder, and defense is expensive.  Thus 
software patents tend toward creating an oligopoly of large companies with the 
power to prevent the production and use of software written outside the cartel.  
This danger is not notional.  Microsoft has claimed that authors of competing 
OSes are in violation of some Microsoft patents, and Microsoft has succeeded in 
extracting license fees for use of OSes which Microsoft did not write a single line 
of. 

I remain your fellow user of free software, such as the software on which the Net 
runs, and fellow student of history and probability, Jay Sulzberger. 


