February 8, 2013

George Elliott
Deputy Administrator for Policy & External Affairs
United States Patent and Trademark Office

Dear Mr. Elliott,

Thank you for providing AUTM the opportunity to speak at the January 10, 2013 Roundtable on Genetic Diagnostic Testing. We appreciate the preparation which went into the event, the diversity of views presented and the presence and attentive listening of three senior USPTO representatives including yourself, Deputy Under Secretary of Commerce for Intellectual Property Teresa Stanek Rea, and Patent Reform Coordinator Janet Gongola.

AUTM’s has more than 3,200 members who work in universities, research institutions, teaching hospitals, government agencies and companies across the globe. Our members manage and license innovations with the primary objective of making them available to the public. Often, but not always, AUTM members elect to file U.S. patents on these inventions to facilitate technology transfer and public access to these discoveries.

AUTM members are skilled at working with a diverse group of stakeholders, - from academic inventors to entrepreneurs, from start-ups to large companies, from government funding agencies to nonprofit organizations and foundations. Our members often have interdisciplinary backgrounds. Many have advanced degrees in the scientific discipline associated with the inventions that they manage plus business development and contract negotiation experience. Others have a law degree and subsequently acquired technology sector specific expertise over the course of their careers. AUTM members are skilled at negotiating license agreements which align interests among diverse groups of stakeholders. As such, we are uniquely qualified to respond to the four questions in section 27 of the America Invents Act (AIA).

General Statement
AUTM members want first opinion, better opinion and different opinion diagnostic tests, available to as many people as soon as possible. We believe skilled licensing aligns interests and fulfills the promise of personalized medicine. AUTM’s view on this matter is described in detail in Point 2 of the Association’s Nine Points to Consider in Licensing University Technology’. These objectives are all possible now under the Bayh-Dole Act which provides universities needed flexibility to license technologies on terms that encourage prompt commercialization making federally funded inventions available to protect public health and welfare. Rushing to enact additional legislation can do
more harm than good, particularly if it is designed to solve a poorly defined problem. It would also be a serious mistake to pressure agencies to invoke march in rights provisions against companies who have fully complied with the terms of their licenses. Such changing the rules at the end of the game would undermine industry confidence in universities and federal laboratories as reliable research partners. The resulting damage to our economy would far outweigh any short term benefits.

Approach
This letter, per the request in your letter dated January 22, more fully explains our January 10 remarks, citing other references and public information.

Definitions: What is a “genetic diagnostic test”?
Before focusing on possible legislative remedies, we should focus on and better define the issue at hand, -patient benefit from access to diagnostic tests, -“genetic” or otherwise. We don’t think the term “genetic diagnostic test” is clear or useful. Even if there were a clearly defined “genetic diagnostic test”, AUTM believes that patients should benefit from access to all diagnostic tests.

Looking over recent examples of diagnostic products in AUTM Better World Reports, listed in an Appendix to this letter, more than half the products described use protein analytes to find protein biomarkers. These are diagnostic tests, but are they “genetic diagnostic tests”? Here is a description from the Argonne National Laboratory 2010 Better World Report:4 “Each serves as a miniature laboratory with a unique protein, antibody or nucleic acid that will attach to a particular DNA sequence or antigen to identify infectious diseases, such as ...”. Is that a “genetic diagnostic test”?

Using public patent databases, it is possible to find patents by inventors named in the Better World Reports, and peruse the patent claims. In many cases the claims cover biomarkers which are not nucleic acids. Sometimes the claims do reference nucleic acids. Sometimes a single patent has claims which reference both proteins and nucleic acids. These observations are consistent with the BNA3 findings, and support our remarks January 10, 2013. Patents do not map to well to types of products or to types of diagnostic tests. Sometimes, the same patents are relevant to both therapeutics and diagnostics.

Evolving science: What is “genetic”?v
Scientific discoveries published as recently as September 2012 continue to change our understanding of the word “gene”. Some DNA sequences code for protein, -but other sequences determine whether or not the protein is made at all. v Using an imperfect but still helpful cooking analogy, if a “gene” (recipe) is the instructions for protein manufacture, are the instructions the i) the ingredients list only (the protein coding region), or ii) the ingredients list plus mixing and cooking instructions (epigenetic modifications)? See “The Epigenetics Revolution: How Modern Biology is Rewriting Our Understanding of Genetics, Disease, and Inheritance”vi, for a compelling and accessible discussion of the many types of “cooking instructions”, -from methyl groups on nucleotides, to acetyl groups on histones, to ncRNA’s (non coding RNA). All this new science, only 11 years after the publication of the human genome, raises the issue of definition and stability of the definition of “gene”. What is a “gene”, what is “genetic”, and what is a “genetic diagnostic” test? What will we think a “genetic diagnostic test” is in five years?

Thus, rules and policies directed at a poorly defined term “genetic diagnostic test” will be blunt, confusing, costly and ineffective. Appendix 2 of the SACGHS reportvii and the March 2012 BNAviii study show that the field of use of the license, a result of a conversation which takes place at the time the patent is being licensed, is a far superior predictor of the type of product a patent will cover than is the patent itself.
License Exclusivity
As explained in the Nine Pointsviii, particularly Point 2 and paragraph 2.1 in the Appendix of the Nine Points, and elsewhereix, x, exclusivity is a matter of degree. A few examples from the AUTM 2010 BWR Illustrate field specific exclusivity:

The Argonne National Laboratory biochip point-of-care diagnostic portfolio contains 29 issued U.S. patents with six pending applications, and the Argonne TDC [Technology Development and Commercialization organization] has granted three exclusive licenses with defined fields of use [emphasis added] to:

• Safeguard Biosystems-focusing on veterinary diagnostics
• Aurora Photonics-developing biochip imager for research and diagnostics
• Akonn Biosystems-developing human diagnostics.

*University of Chicago: Minichromosomes Carry the Key to Improved Crops, Better Yields. pp 60-62. Page 62

And, it [Chromatin, Inc.] receives revenues from its licensing contracts with agricultural companies. These include a 2007 collaborative agreement with agricultural giant Monsanto Co. allowing that organization to adapt Chromatin technology for its research crops. Also in 2007, Chromatin granted Syngenta Biology Inc. a nonexclusive license to use the technology for corn and soybeans.

Other agreements have followed — with Dow AgroSciences for research on combining Chromatin minichromosomes with Dow technology and with Bayer Crop-Science for its use in cotton plants. An exclusive [emphasis added] agreement with Syngenta lets that company pursue minichromosome technology in sugarcane.

Start-ups and Small Companies
Start-ups and small companies play an important role in making diagnostic tests available. For example, referring to a preeclampsia diagnostic arising from biomarkers studied at Beth Israel Deaconess Medical Center (BIDMC) and Massachusetts General Hospital (MGH)x, Mark Chalek, director of the BIDMC technology transfer office said:

“We spent the better part of one year trying to find a big pharmaceutical company to license the technology. Most large pharmaceutical companies were concerned that the clinical trials would be too risky and that the preeclampsia market would be too small to justify an investment”.

The BWR goes on to recount that the technology was first licensed to Nephromics, a start-up, which furthered the commercial development before sublicensing a test kit to larger companies. Additional remarks on the role of entrepreneurs and start-ups are found in a BWR on PhyloChipx:

“Virginia de la Puente, senior licensing associate in Technology Transfer and Intellectual Property Management at LBNL [Lawrence Berkeley National Laboratory], is the first to admit that the licensing history of PhyloChip technology is unusual: `This technology was the overall third-place winner for the Wall street Journal’s 2008 Technology Innovation Awards. You might think that would pretty much guarantee a licensing deal, but it was not to be. We had three or four companies interested, but none of them came back with a proposal’. She adds, ‘There is a certain amount of tension in tech transfer. Big companies want a certain level of development, and small companies generally don’t have a lot of money. You have to find the company that’s the right fit for the technology.’”
Not surprisingly, the “right fit” turned out to be a start-up.

Start-ups played a role in almost all the examples in Appendix A, Psynova Neurotech, Diagnostics for the Real World, ContraVac, Akonni, TessArae, Chromatin, Nephromics, Banyan Biomarkers, PhyloChip, and BioArray.

Start-ups and exclusivity
The table below shows exclusivity by type of company from the 2004, 2005 and 2006 AUTM surveys, -the most recent years for which exclusivity data by company type were gathered. Note that the AUTM Survey lumps “exclusive, all field of use” with “exclusive, by field of use”.

<table>
<thead>
<tr>
<th>AUTM Survey Respondents: % "Excl" (includes Exclusive, All Fields of Use, and Exclusive by Field of Use) by Fiscal Year</th>
<th>to Start-ups</th>
<th>to small companies</th>
<th>to large companies</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>91%</td>
<td>42%</td>
<td>35%</td>
</tr>
<tr>
<td>2005</td>
<td>92%</td>
<td>39%</td>
<td>32%</td>
</tr>
<tr>
<td>2006</td>
<td>91%</td>
<td>44%</td>
<td>34%</td>
</tr>
</tbody>
</table>

Data on DNA Patents (patents, which by definition, reference nucleic acids in their claims)\(^{\text{viii}}\), which were gathered with a category for “exclusive, by field of use” again shows the role of exclusivity for start-ups and small companies. Per figure 5: Of the 44 licenses to DNA Patents which were granted to start-ups, only 1 was characterized as nonexclusive, 13 as “exclusive, by field of use”, and 29 as “exclusive, all fields of use”. Thus, AUTM believes that it is important to retain the option of granting licenses with exclusivity to assure continued development of diagnostics in the public interest.

Technology diffusion after granting a license with exclusivity
Licensed technologies can become available by direct sale to consumers\(^{\text{xiv}}\), and also by subsequent sublicenses and strategic partnerships. The preeclampsia BWR\(^{\text{xv}}\) and the minichromosome BWR\(^{\text{xvi}}\) illustrate diffusion via sublicensing. Note that the right to grant sublicenses is essentially only included in licenses with a degree of exclusivity.

Alternative to patents
We note that the sole alternative to patents is not “open source”, it is also proprietary, forever, databases, unrelated to patents. Some companies, such as the crowd funded µBiome and bioinformatic 23andMe collect tissue samples and other personal information and create proprietary forever biomarker databases, -forever in that there is no requirement for the company to share the collected information. In contrast, patents incentivize disclosure by granting time limited monopolies to innovators who describe and enable their inventions, -and the written description and enablement requirements are substantial in biology.

Evolving patent law.
Concern for patient access has been motivated in part by the case studies in the SACGHS report, which were subsequently published in a special issue of Genetics in Medicine\(^{\text{xvii}}\). As shown in the BNA paper\(^{\text{xviii}}\), only 10 of 99 of the patents numbers referenced in the case studies and Genetics in Medicine articles have priority dates after the 2001 publication of the human genome. Only 3 of the 99 have priority dates after the September 7, 2005 the in re Fisher decision on specific utility, which of course post dates the 2004 Rochester v. Searle decision on written description and enablement. Thus, the scope of claimable subject matter has been substantially circumscribed relative to the examples often cited to support the proposition that there is a problem with patient access to “genetic diagnostic tests”.
Patents and licenses are incentives
Robust application of the written description and enablement requirements serve the public interest via a requirement to disclose and describe the invention. Licenses also can incentivize disclosure in the public interest. License diligence can include a contractual requirement to publish data or to permit confirmatory laboratory testing by a provider other than the licensee. This type of diligence requirement however is typically present only in licenses with exclusivity.

Insurance
On the whole, getting regulatory approval for a therapeutic is harder than for a diagnostic, and on the whole, getting insurance reimbursement coverage is harder for diagnostic than for a therapeutic. At a workshop at the AUTM 2010 annual meeting: “Incentives in the Diagnostic Marketplace”, - during which health economics and insurance reimbursement figured prominently, one speaker showed a slide with sales of OncotypeDx over time, and then insurance reimbursement decisions at points in time, which suggested that sales growth depended on favorable insurance reimbursement decisions.

Favorable reimbursement decisions in turn depend on a consensus assessment of the value provided by the test, by and among patients, physicians, and insurance companies, - a diverse group of stakeholders. Thus, it is as important to maintain the option to create and manage patent and license incentives in diagnostics as it is in other areas of medicine.

Summary
The accumulated evidence on the incentives and benefits created by skilled licensing, - including the flexibility to negotiate exclusivity and diligence, of patented and expiring proprietary rights, supports broad patent eligibility, skillful patent examination and skillful patent licensing as the best means of advancing patient access to diagnostic tests and personalized medicine.

Sincerely,

Todd T. Sherer, Ph. D., CLP
President

See supra fn 3

Beth Israel Deaconess Medical Center: Test Warns Mothers Before Preeclampsia Strikes. 2010 BWR pp 4-6

See supra fn 9, figure 5 in particular.

See supra fn 11

University of Chicago: Minichromosomes Carry the Key to Improved Crops, Better Yields. 2010 BWR pp 60-62

Genetics in Medicine Vol. 12, No. 4, April 2010 Supplement.

See supra fn 3
Appendix A - Better World Reports

2009

-University of Cambridge: Biomarkers and Blood Test Breathe New Life into Diagnosis and Treatment of Mental Illness. pp18-20
Protein biomarkers for diagnosing schizophrenia, first licensed to a U.K. start-up, Psynova Neurotech, which then partnered with Austin, Texas based Rules Based Medicine, at the time a small private company. http://www.psynova-neurotech.com/site/news/press.htm

Antibody dip-stick for diagnosing Chlamydia trachomatis and other infectious diseases, licensed to Diagnostics for the Real World, based both in the U.K. and California. http://www.haem.cam.ac.uk/ddu/diagnostics-for-the-real-world/

2010

-Argonne National Laboratory; Rapid, Cost-Effective Diagnostic System based on Innovative Nano Biosensors Helps Identify and Slow Spread of Major Diseases. pp 1-3
Technology licensed to three companies, including Akonni. In BWR described as a 96-well microtiter plate on a 1 cm by 1cm slide that contains several “dots”, “each with a unique protein, antibody, or nucleic acid that will attach to a particular DNA sequence or antigen to identify infectious diseases”. http://www.akonni.com/trudiagnosis/trudiagnosis-beginning.html

-Naval Research Laboratory: Genetic Testing Takes Guesswork out of Diagnosis. pp 27-28
Bioinformatic (resequencing pathogen microarray) nucleic acid based method licensed to start-up TessArae, which partnered with Affymetrix. The inventors left NRL to start the company. First products directed to finding and charactering infectious diseases. www.tessarrae.com

-University of Chicago: Minichromosomes Carry the Key to Improved Crops, Better Yields. pp 60-62
Minichromosome technology for engineering crops to improve yields, licensed to Chromatin, Inc., a start-up founded by the inventors. Chromatin has various agreements with Monsanto, Syngenta, Dow and Bayer. See full text of Better World Report. www.chromatininc.com

-Beth Israel Deaconess Medical Center: Test Warns Mothers Before Preeclampsia Strikes. pp 4-6
Protein biomarker for diagnosing preeclampsia, licensed to Nephromics, a start-up, and then Nephromics licensed to Abbott, Roche and others.

2011
-University of Florida, Gainesville, Fla.: Florida Researchers develop the First Blood Test to Diagnose Brain Injuries. pp 56-58.
Protein biomarkers for diagnosing traumatic brain injury, licensed to Banyan Biomarkers a start-up founded by the inventors www.banyanbio.com

Bioinformatic method, using a nucleic acid microarray, including sequences from the 16S ribosomal gene in bacteria for profiling microbial populations. The company was called PhyloChip, and is has been renamed Second Genome. http://phylochip.com/phylochip.html http://www.lbl.gov/tt/techs/lbnl2229.html http://www.secondgenome.com/

-University of Nevada, Reno, Reno, Nev.: Diagnostic Breakthrough Unmasks a Killer in Sub-Saharan Africa. pp 64-66.
Antibody for Crytococcus neoformans, which causes Cryptococcal meningitis, obtained from University of Nevada, Reno, and licensed to Immuno-Mycologics, a small company founded in 1979 in Norman, Oklahoma. http://www.immy.com/

2012
Nucleic acid array for platelet typing. Protein and nucleic acid biomarkers from the BloodCenter of Wisconsin were licensed to BioArray for use with their Beadchip platform. Immucor acquired BioArray and the rights to the platelet typing test. http://www.immucor.com/Global/Products/Pages/Molecular.aspx
Figures and tables for the paper.

Figure 1: Relationships and categories in the NIH OTT relational database.

The patents were found by the DNA Patent Database algorithm: “M”, in the illustration for “marker”, and then further categorized by expert curators, marked “RM”, in the illustration for “refined marker”. The NIH OTT provided the license field of use and product categories. “Dx” means “Diagnostic”. “FOU” means “Field of Use”.

![Diagram of relationships and categories in the NIH OTT relational database]

Key:
- Patent found by DPD
- Patent in the same family as a DNA Patent but not a DNA Patent (Not curated)
- Lic w Dx Field of Use
- All other licenses
- Dx Products: Nucleic acids are not the Analyte
- Dx Products AND Nucleic Acids are the Analyte
- All other Products

March 19, 2012
Figure 2. ROC plot for patent and license classifiers used to predict if the patent, or license, will cover a genomic diagnostic product. Variations within the series are due to varying sensitivity and specificity, and requiring, or not requiring the product to use a nucleic acid as the analyte. FP = False Positive, FN = False Negative

ROC Curve for patent (diamond) and license (circle) classifiers. Test: "Does the patent/license cover a genomic diagnostic product: Y/N?"

- Use the Field of Use in the License Agreement as the classifier.
- Rely on computer to select DNA Patents. Use computer selection as the sole classifier.
- Expert curators read claims of DNA Patents and refine code. Do not count the non DNA Patents as TN's and FN's.
- Expert curators read claims of DNA Patents and refine code. Count the non DNA Patents as TN's and FN's.

March 19, 2012
Table 1: Data on NIH OTT licensing of DNA Patents and its comparability to prior AI data.

Bold marks data found in both studies, underlined marks data found only in one study.

<table>
<thead>
<tr>
<th>Data</th>
<th>Academic Institution Study</th>
<th>NIH OTT Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Study Group of Patents</td>
<td>DNA Patents found by the DNA Patent Database Algorithm managed by 19 Academic Institutions*. 17 responded completely, 2 partially, out of 30 invited.</td>
<td>DNA Patents found by the DNA Patent Database Algorithm managed by the NIH OTT</td>
</tr>
<tr>
<td>Date of Response</td>
<td>2003, some policy responses received 2004</td>
<td>Fall 2007 –Spring 2010</td>
</tr>
<tr>
<td>Licensing Frequency Information</td>
<td>Yes, for approximately 2600 distinct patents.</td>
<td>Yes, for 585 patents found by the DPD algorithm, and also for 118 others in the same patent family</td>
</tr>
<tr>
<td>Data on patents in the same family as a DNA Patent, but not DNA Patents</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Structure and Format of Data</td>
<td>Relational Database for 2600 patents licensed 1-9 times. Separate questionnaire for patents licensed >9 times. Detailed license data, including company type, start-up, small entity, large entity, for 179 license agreements to 487 distinct patents representative, by age of patent, of patents licensed 1-9 times. Aggregate data for 21 patent families (48 patents) licensed >9 times.</td>
<td>Relational Database for 585 DNA based patents plus 118 other patents. Same form of data for patents licensed 1-9 times as for those licensed > 9 times. Detailed license data for all patents and licenses, including on product types, but no systematic data on company type (start-up, small entity, large entity).</td>
</tr>
<tr>
<td>Types of Agreements about which there is information</td>
<td>Commercial Patent License</td>
<td>Commercial Patent License</td>
</tr>
<tr>
<td>Exclusivity Information</td>
<td>Sample of 179 Agreements for patents licensed 1-9 times, aggregate only for patents licensed >9 times</td>
<td>Every license agreement</td>
</tr>
<tr>
<td>Field of Use Information</td>
<td>No, except by implication that there is a Field of Use for licenses “Exclusive, by Field of Use”</td>
<td>Yes, including “Diagnostic Sales”, “Therapeutic Sales” and “Materials Sales”.</td>
</tr>
<tr>
<td>Timing of License Execution, Product Sales, and License Termination</td>
<td>Yes for Agreements to patents licensed 1-9 times. Less complete for those patents licensed > 9 times</td>
<td>Yes</td>
</tr>
<tr>
<td>Information on the Types of Products</td>
<td>No, Can try to infer from patent titles</td>
<td>Yes, implied from the License Field of Use. For diagnostics, whether a nucleic acid is the analyte.</td>
</tr>
<tr>
<td>Diligence Information</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Revenue Information</td>
<td>Some</td>
<td>No</td>
</tr>
<tr>
<td>Answer to “were there competing interested parties at the time the license was signed?”</td>
<td>Yes, for the Agreements to patents licensed 1-9 times.</td>
<td>No</td>
</tr>
</tbody>
</table>

* Harvard University, California Institute of Technology, Cornell University, Massachusetts Institute of Technology, University of Pennsylvania, Rockefeller University, Stanford University, University of Chicago, University of Florida, University of Michigan, Wisconsin Alumni Research Foundation, Columbia University, the Salk Institute, the Research Foundation of the State of New York, University of California, University of Utah, Washington University at Saint Louis, Yale University, the Whitehead Institute.

March 19, 2012
Figure 3: A comparison of the licensing frequency of AI and NIH OTT managed DNA Patents

Figure 4A: Timelines for 43 license contracts to the Gallo-Montagnier sextet of HIV related patents. All license data in Figures 4A, 4B, and 4C were received September 2007. The product data were received in April 2010, but required to be accurate as of September 2007.

March 19, 2012
Figure 4B Timelines for the 25 license contracts to the Gallo-Montagnier sextet of HIV related patents which ever paid an earned royalty on a product sale.

Figure 4C Timelines for the 15 license contracts to the Gallo-Montaginer sextet of HIV related patents which ever paid an earned royalty on a product sale, and remain active licenses. 9 of the 15 are settlement agreements.
Comparison of unforeseeable license termination for licenses with and without products

<table>
<thead>
<tr>
<th></th>
<th>% unforeseeable termination of licenses with products</th>
<th>% unforeseeable termination of licenses without products</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>NIH</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Unforeseeable termination for AI’s means the license ended for a reason other than patent expiration.
Unforeseeable termination for the NIH means that the license ended for a reason other than patent expiration or a time limit in the license itself.

Figure 6A. Comparison of median product development timelines for groups of AI and NIH OTT licenses by exclusivity type. Left most data point is 1st patent priority date, followed by, left to right: patent publication date, license effective date, and receipt of earned royalties on product sales. Red markers are AI licenses, blue NIH OTT licenses. Circles are for nonexclusive licenses, and triangle for licenses with exclusivity. See legend. All NIH OTT licenses are nonsettlement agreements for patents licensed 1-9 times, the most directly comparable with AI licenses. Timelines are calculated from data in S7A and S7B.

March 19, 2012
Figure 6B. Comparison of median product development timelines for groups of licenses entirely within the NIH OTT set, by product types. Left most data point is 1st patent priority date, followed by, left to right: patent publication date, license effective date, and receipt of earned royalties on product sales. Opaque points are only nonsettlement agreements for patents licensed 1-9 times, -the most comparable to the AI set of licenses. Transparent points are settlement agreements only for all types of patents, those licensed 1-9 times, and those licensed >9 times. Timelines are calculated from data in tables S6A and S6C.

Table 2.

<table>
<thead>
<tr>
<th>Diagnostic Type</th>
<th>FDA/EME Approved?</th>
<th>Nucleic Acid based?</th>
<th># of distinct sources Fall 2007 /# of distinct sources ever.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious agents:</td>
<td>21/29</td>
<td>2/29</td>
<td>16/29</td>
</tr>
<tr>
<td>Inherited, classic “IEM” and metabolic phenotype, not specialized oncology</td>
<td>0/10</td>
<td>10/10</td>
<td>9/10</td>
</tr>
<tr>
<td>Oncology only:</td>
<td>4/8</td>
<td>7/8</td>
<td>7/8</td>
</tr>
<tr>
<td>Other non oncology inherited,</td>
<td>3/3</td>
<td>0/3</td>
<td>3/3</td>
</tr>
<tr>
<td>Total</td>
<td>28/50</td>
<td>19/50</td>
<td>35/50</td>
</tr>
</tbody>
</table>

March 19, 2012