

From: Robert Sachs
Sent: Monday, February 04, 2013 12:54 PM
To: SoftwareRoundtable2013
Subject: Registration for Roundtable

Comments on the application of Section 112(f) to software patent claims. 10 minutes. My
comments will be based in part on the attached, which was provided to Mr. Drew Hirshfeld back
in September.

Best regards

Robert R. Sachs

September 20, 2012

VIA E-MAIL (ANDREW.HIRSHFELD@USPTO.GOV)

Drew Hirshfeld
Deputy Commissioner for Patent Examination Policy
U.S. Patent & Trademark Office
Department of Commerce

Re: Comments Regarding § 112 Functional Claiming in Software

Dear Drew:

We appreciate the opportunity to assist you and the others at the USPTO in developing
guidelines for the examination of functional claim limitations. We see this as an ongoing
dialogue. Thus our comments are preliminary observations, and we welcome feedback and
further discussion on any and all points raised below.

First, during the conference call there were repeated references to the “problems” of
functional claim limitations, including “functional claiming at the point of novelty.” We would
suggest that the USPTO ask the stakeholder/user community to provide various examples of
“problem claims”, preferably covering a number of different types of problems. We think this is
important because to the extent that the current § 112 Supplementary Examination Guidelines
and case law are “correct” in theory, there should not be any “problem” claims, since any
functional claim would be properly identified and evaluated with respect to the underlying
specification. Thus, having specific examples to focus on will help define the “problem” and
provide useful test cases for consideration of specific rules and solutions.

Second, before providing specific comments, we would like to set the context for the overall
discussion, the examination of functional claiming in system or apparatus claims for computer-
related inventions. More specifically, the PowerPoint presentation for the Supplementary §
112 Examination Guidelines (slide 36) set forth the following methodology:

1.	 Determine, under BRI, whether the limitation invokes §112, ¶6

a.	 The BRI is “what is reasonable, not what is possible, and should be viewed in light of
the specification and how one of ordinary skill in the art would interpret it.” (slide 8).

i. The claim term “computer” must be given the BRI (slide 62).

Drew Hirshfeld
September 20, 2012
Page 2

1.	 “Computers” are commonly understood by one of ordinary skill to describe a
variety of devices with varying degrees of complexity and capabilities.

2.	 The BRI of the term “computer” should not be limited to a computer having a
specific set of characteristics and capabilities, unless the term is modified by
other claim terms or clearly defined in the specification to be different from its
common meaning.

b.	 Does the claim recite “means for” or “step for” language? (slide 39).

c.	 Does the claim recite a “non-structural” term? (slide 40).

d.	 Does the claim recite a structural modifier before the non-structural term? (slide 41).

e.	 Does the claim recite a structural term with functional language? (slide 42)

i.	 A “structural term” is one that “has achieved recognition as a noun denoting
structure” to those of ordinary skill in the art, based on usage in prior art and in
subject matter specific sources, e.g., dictionaries (slide 43).

2.	 If the limitation invokes §112, ¶6, interpret the scope of the claim limitation to include
the structure specifically disclosed in the specification for achieving the recited function
and equivalents to that structure.

a.	 Is the disclosed function achieved by any general purpose computer (GPC) without
special programming (e.g., storing, calculating, processing? If so, then a GPC is
sufficient structure. (slide 46).

b.	 Is the disclosed function achieved by “special purpose computer” (SPC)? If so, then a
GPC is not sufficient, and “the corresponding structure must include an algorithm
that transforms the general purpose computer to the special purpose computer
programmed to perform the specific claimed function.” (slide 48). “The specification
must disclose the computer and the algorithm (e.g., the necessary steps and/or
flowcharts) that perform the claimed function in sufficient detail such that one of
ordinary skill can reasonably conclude that the inventor invented the claimed subject
matter.” (slide 57).

3.	 If the specification does not disclose the structure (or sufficient structure) for achieving
the recited function of the §112, ¶6 limitation, reject the claim under §112, ¶2 because
the claim scope is indefinite.

i.	 “If the specification discloses only software as the corresponding structure, the
claim must be rejected as indefinite under §112, ¶2, as no corresponding
structure has been identified.” (slide 49).

Drew Hirshfeld
September 20, 2012
Page 3

While we agree with the overall methodology, we believe there are particular concerns with
the bolded sections, and will direct our comments to those.

What is BRI in the Software Context?

The importance of “reasonable” in BRI cannot be overemphasized, and in software particularly,
unreasonable interpretations are much more common than in other fields. The terminology for
many technical fields is characterized by two factors: 1) there is a relatively well-defined
vocabulary with which those of skill in the art are familiar; and 2) the terminology refers to
physical entities which have tangible properties. Thus, examiners in the mechanical arts,
chemical arts, and electrical arts work with terms that reliably denote “real-world” objects,
such as latches, carbon molecules and capacitors.

In the software field, these two conditions are more relaxed. First, while there is a large
vocabulary of agreed-upon terms (e.g., process, thread, array, string, list, interface), there are
many terms that are by their nature more flexible or generic in scope, and are used in many
different contexts to refer to software entities that differ dramatically in their implementation.
For example, the term message can refer to anything from very “low level” messages that are
not directly understandable by a human (e.g., signals within a CPU, encoded network data
packets) to “high level” messages that are human readable, (e.g., e-mail and text messages) and
to anything in between. Thus, the meaning of words such as these is highly dependent on the
context.

The dependence of meaning of words on their context of usage is a fundamental feature of
human languages; this because of polysemy, where words have multiple meanings, depending
on their context. However, it is very common for examiners to find a word like “message” in
the claim—where it is being used by the applicant specifically in the context of the disclosure—
and interpret it without any consideration of the specification, often giving it an entirely
different and inapplicable meaning. In some cases, the examiner adopts an unreasonable
interpretation specifically for the purpose of (superficially) reading the claim onto a reference.
In one case, when an examiner was asked to define the meaning of a term in a claim, she
indicated that the term meant what the reference disclosed, and when asked to explain what
the reference disclosed, she replied it disclosed what was claimed. Similarly, we have had
examiners state that database is simply anything that stores data; this results obviously in
reading the term on any computer related prior art reference whatsoever, entirely ignoring the
context of the applicant’s usage (e.g., a relational database management system, with tables,
records, etc.). Finally, it is common for applicants to use short noun phrases as terms, rather
than individual words. In those cases, it is per se unreasonable for an examiner to attempt to
interpret the words individually, thus ignoring the context and usage provided by the applicant.
In one of our cases, the examiner attempted to interpret the term content reference by reading
content separately from reference, and then mapping each of these terms to different prior art
documents. This is like reading buttermilk as butter and milk.

Drew Hirshfeld
September 20, 2012
Page 4

Second, software terminology often refers to entities which do not have tangible existence, and
this makes it harder for examiners to have a clear understanding of the scope of the term.
Nonetheless, all software entities do have a physical realization inside a computer, even if one
cannot “touch” them. Further, many terms for software entities denote specific structures:
list, array, database table, object, string, matrix, hash table, binary tree, which those of skill in
the art would immediately recognize—and in fact are known in the art as “data structures.”
Similarly, there are many function terms that also have well-understood meanings: sort, hash,
lookup, read, write, register, index, etc. Importantly, for terms such as these, those of skill in
the art are readily able to determine their scope and distinguish them from other terms, and
thus use of these terms should in most cases suffice to provide specific structure, as will be
discussed further below.

There will, of course, be instances in which claim terms do not even appear in the specification,
or are used with very little context. In those circumstances, an examiner has more freedom to
provide a more general interpretation. Even so, the examiner should use an interpretation
consistent with the field of the invention. Thus a token in the context of data security means
something very different from a token in the context of lexical analysis (performed by
compilers), and thus even if a term appears for the first time in the claim, rather than the
specification, it should still be interpreted in light of the overall nature of the claimed invention.

In sum, examiners should not be permitted to ignore context or definition of terms in the
specification. Instead, examiners should give more deference to the actual use of the claim
terms in specification to provide the meaning of a term. An interpretation that would result in
a nonsensical meaning in the operation of the invention should not be adopted. Nor should
interpretations be adopted simply because the same term (or parts thereof) shows up in a prior
art reference. Most fundamentally, an interpretation that strips the term of any and all
meaning (e.g. a message is any piece of data; a database is anything that stores data) should be
highly disfavored.

The notion that examiners provide greater deference to the specification would be further
enhanced with stricter requirements for applicants to define terms in the specifications and/or
file history. While the use of a “definitions” section in patents is one possible suggestion, this
approach is likely to invite gamesmanship as applicants create overly broad definitions of
terms.

Instead of relying on applicants to define terms, another suggestion is that the USPTO adopt a
specific set of “reasonable” definitions for software terms that can be utilized by applicants.
While initially appealing, there are several problems with this approach. First, to the extent
that many software terms are already known and have well-defined meaning to the technical
community, nothing is gained by such an effort. Second, given the rate at which software

Drew Hirshfeld
September 20, 2012
Page 5

develops, it would be beyond the resources of the USPTO to continually update such a
lexicography.

A better alternative to these is to define a process that the examiner can follow to determine
the meaning of a term. We shall outline that process below.

Structural and Non-structural terms

The current guidelines use terminology that is potentially confusing to examiners. In
particular, the guidelines use the phrase “non-structural term” to refer to terms that do not
provide a specific structure and are thus substitutes for “means for,” while using the phrase
“structural term” for terms that do not invoke § 112/6. The assumption is that any term must
fall into one of these two categories, and that upon making that determination, there
automatically follow specific consequences in the legal analysis.

One problem with the categorization is that terms like mechanism, module, device, component,
unit, element are not “non-structural” per se. Rather, they are generic. The word machine
certainly denotes a physical structure, but does not limit it to any specific type of structure with
a commonly understood specific function.

More generally, all terms have a greater or lesser degree of specificity in their “ordinary”
meaning, and thus can be placed on a spectrum from highly specific to highly general (or
generic). Using the examples in the Guidelines, we can arrange the terms as follows:

Generic Potentially Generic or Specific Specific

mechanism
module
device

unit
component element

member
apparatus
machine
system
process

logic
circuit

memory
controller

filter
brake
clamp
lock

screwdriver
adder

multiplier
valve

The real issue is deciding whether a given term identifies generic or specific structure, not
whether it is “non-structural” or “structural.” Some terms, such as module etc., are agreed to
be generic, and some, like filter are understood to be specific.

Drew Hirshfeld
September 20, 2012
Page 6

As noted above, many terms in software are indeed specifically understood to be ”structural,”
in that they would denote structure to those of ordinary skill in the art. However, use within the
art (and dictionaries) cannot be the only way to denote structure. For some terms (i.e., the one
listed above as “Potentially Generic or Specific), whether they are structural or not depends
almost entirely on how they are used in the specification, and whether they are used to refer to
a generic or specific implementation. Thus, the problem with the Guidelines here is that using
the labels “structural” and “non-structural” begs the question of what a term is before the
examiner even considers the evidence of the term’s usage.

What we propose is an approach that considers whether claim terms denote generic structure
or specific structure based on whether the applicant used the claim term in the specification to
refer to specific or generic structure, rather than deciding whether the term itself describes
structure. This is a subtle but important difference.

A term denotes specific structure, for example, if there is provided a specific elaboration of its
implementation. Thus, for example, the term logic can be a specific structure if the term is
used to refer to a specific function, algorithm, equation, schematic, flowchart, or other
implementation. For example, “Fig. 3 illustrates the operation of logic 100”, where Figure 3 is a
flowchart of specific steps that can be implemented at that level of physical logic devices,
would be specific structure. However, if Figure 3 is a very high level “white box” showing a
processor, memory, and a few named “modules,” then the use is generic, because it does not
provide a specific structure sufficient for performing the claimed function. Thus, the use of the
same word “logic” may result in a different legal conclusion based upon the differences in the
adequacy of structure disclosed in the specification. The same is true of the other terms set
forth above.

In terms of examination process then, the examiner should undertake the following procedure.
●	 Decide whether the term as used in the claim and specification denotes specific

structure to those of skill in the art.

o If so, then the examiner states in the office action that term has been found to recite
specific structure, and identify the basis of the finding with reference to either external
sources that define the term, or to the specification. The applicant can then accept the
finding, or challenge it.

o If a term clearly does not denote specific structure, then reject the claim under
§112(b). The applicant can then respond by indicating that he elects treatment under §
112(b), or alternatively indicating the reasons for why the term does denote specific
structure, or amend the claim.

o If the examiner is unable to determine whether the claim denotes specific structure,
then again reject the claim under §112(b) and allow the applicant to either amend or to

Drew Hirshfeld
September 20, 2012
Page 7

introduce evidence (e.g., citation to external sources, or to the specification) to
demonstrate that the term as used conveys structure.

Required Disclosure of Algorithms

The Guidelines state that when a claimed function is “specific,” then “the corresponding
structure must include an algorithm that transforms the general purpose computer to the
special purpose computer programmed to perform the specific claimed function.” (Slide 48,
emphasis added). “The algorithm may be expressed in any understandable terms, including
mathematical formula, prose, flow chart, or other appropriate language or drawing that
discloses the structure.” (Slide 49). This is at best incomplete, and at worst incorrect.

First, it is incomplete to suggest that an “algorithm” must be spelled out in terms of individual
steps (“flowchart”) or computations (“mathematical formula”). There are thousands of
algorithms that are already known in the art that can be referred to without ambiguity simply
by reference, and which those of skill in the art can readily implement. See, for example,
Wikipedia’s List of Algorithms, which provides links to hundreds of algorithms in various
scientific fields. Thus, just as it would be sufficient in the hardware arts to reference specific
complex hardware (e.g., ALU) without an explanation of its underlying circuitry, so to should it
be acceptable to reference algorithms. Indeed, the emphasis on “flowcharts” is ill-advised,
since this particular formalism it not well suited to many complex, state-dependent or parallel
algorithms more commonly used today. In some cases, the presence of a flowchart may look
good, but in fact fail to sufficiently describe anything meaningful at all.

At worst, the requirement for an algorithm is incorrect because it collapses structure into
function. First, a claim may recite a “hash module for hashing the input value to an output
value”, and the disclosure describe the hash module as including a hash table, and even
illustrate in a figure an example of the table and non-descript “hash function”. Here, those of
skill in the art know well what a hash table is as a structure and their use with a hash function.
See, for example, Hash Table. Because the term “hash module” is used to refer to a specifically
known structure, a hash table, the term should be considered as a specific structure (“structural
term”) under § 112, rather than a generic structure (“non-structural term”). Second, because
the underlying structure and its functions are known, no specific disclosure of an “algorithm”
for hash module should be necessary.

On the other hand, there will be many cases in which disclosure of an algorithm or other
specific structure is required. One problem with software patents is the lack of commonly used
notations (other than block diagrams and flowcharts) for disclosing software functionality.
Here, the USPTO should consider more specific requirements for how algorithms should be
disclosed, using common notation systems known in the art. There are well-developed
mechanisms for both textual and graphical notations. For example, for textual notation, C-like
pseudo-code or XML-like schemas are commonly used in software engineering, but much less

Drew Hirshfeld
September 20, 2012
Page 8

commonly used in software patents. For graphical notations, the Unified Modeling Language
provides a rich set of diagramming and notations for describing software operations. UML is
just one of the many known software modeling methods. Thus, just as there are standardized
notations and diagramming methods in electronics, chemistry, and biology, civil and mechanical
engineering, which the USPTO has de facto supported, it should push for greater use of formal
descriptions in software patents.

Disclosure of “Only Software”

The Guidelines state that, “If the specification discloses only software as the corresponding
structure, the claim must be rejected as indefinite under § 112, ¶2, as no corresponding
structure has been identified.” (Slide 49). This is simply incorrect, and in conflict with other
parts of the Guidelines: “Sufficiency of explanation is determined in light of the level of ordinary
skill in the art.”

First, as explained above, for software engineers and computer scientists, software entities are
structures in and of themselves. Tables, trees, lists, objects, arrays, etc. have well defined
structural features. To suggest otherwise simply runs counter to the fifty-plus years of the
development of computer science. This is like saying that an And-gate is not structural because

it does not really look like but rather is a complex of semiconductor materials.

Second, even if there is simply no mention of a computer anywhere in the specification, it is
inherent that software to perform a function executes on a computer. Just as it is assumed that
electrical devices use electricity, and there is no specific requirement to mention an electrical
power source for a circuit, since those of skill in the art know that supplying electricity is
necessary, so too there is no reason to require a computer to be described or even mentioned.

Finally, it is an axiom of patent specification drafting that “the specification need not disclose
what is well-known to those skilled in the art and preferably omits that which is well-known to
those skilled and already available to the public.” MPEP 2164.05(a). Yet, requiring a disclosure
of a computer in order to provide support for a software implemented invention violates this
axiom, since those of skill in the art know that all software is executed by computers.
Moreover, the nominal disclosure of a computer does not provide any useful information to
those of ordinary skill—it is simply a formalism without substance.

Consider the following examples. In one, the claim recites the element of a “hash module,” as
above. The disclosure describes the hash module as a hash table and a simple modulo-n hash
function. The disclosure of a computer is limited to a single sentence “The described system,
including the various modules, is implemented on computer having a processor, memory,
storage device, input devices, output devices, and networking devices.” Under the present

Drew Hirshfeld
September 20, 2012
Page 9

guidelines, there is sufficient structure here, even though the disclosure of the computer is
entirely trivial and of nothing more than what is well known.

Now consider a claim that recites the hash module, where the specification provides a very
detailed description of its implementation (which is otherwise not novel, but nonetheless
complicated) and yet makes no mention whatsoever of a computer. Under the Guidelines, this
claim would be rejected as indefinite, even though it is supported by a significantly more
detailed description of the implementation from which one of skill in the art could determine
its scope. These examples make clear that the simple disclosure of a computer is simply a
formalism and adds nothing to the goal of providing clear and definite claims.

Thus, we think the emphasis should be on improving the specificity and detail of the underlying
software architecture and implementation, rather than imposing a more superficial
requirement of listing hardware. This is because the real problem with software patents is the
impression among inventors, patent attorneys, and patent examiners that it is sufficient to
provide very high level descriptions of software inventions—especially ones related to e-
commerce and social networking—that ascribe the desired high level functions to non-descript
“modules.” This impression comes primarily from the large body of existing issued software
patents, a large fraction of which were prepared by patent attorneys without extensive
knowledge of actual software engineering, and subsequently reviewed by patent examiners
equally lacking in such knowledge (for similar reasons). Requiring greater specificity and detail
of the underlying software architecture and implementation would significantly improve the
quality of software patents.

Involving Experts Beyond the Patent Bar

While patent attorneys and other lawyers have a lot to say about how to interpret patent
claims, their approaches tend to be based on their experience and technical training in
particular scientific fields. This information is certainly useful, but it tends to be very ad hoc in
nature, and not based on a deeper theoretical understanding of the problem: the construction
and interpretation of meaning in human languages.

There exists a deep body of research on the nature of meaning in language in the fields of
linguistics and philosophy of language. The USPTO should consider expanding its approach to
claim interpretation generally, and in regards to the issues of Section 112 particularly, by
engaging experts in these fields to assist in the development of examination guidelines. Such
experts would bring a strong theoretical foundation to the questions at hand, as well as a much
needed dose of objective, non-result oriented reasoning.

Drew Hirshfeld
September 20, 2012
Page 10

Thank you for your consideration of the above points. If you would like to discuss further, we
would be glad to make ourselves available at your convenience.

Sincerely,

Robert Sachs and Daniel Brownstone Michelle Lee
Fenwick & West LLP Patent Public Advisory Committee

RRS:ho

A1000/00103/SF/5408338.1

