[image: image2.png]DRAFT C++ Coding Standards
Version 0.1
Secure Coding and Design Standards
April 14, 2010

DRAFT
Secure C++ Coding
Standards & Guidelines

Version 0.1

6 December 2007

	Change/Version Number
	Date of Change
	Sections Changed
	Description
	Person Entering Change

	Created by OCIO Security and SDMG Standards Divsion
	6 Dec 2007
	All
	Initial Submission
	Pam Woodall and Bob Brown

Table of Contents
1USPTO Secure C++ Coding Standards & Guidelines

2Table of Contents

31
Introduction

31.1
Secure C++ Coding Practices

31.2
String Manipulation

31.2.1
C++ std::string

31.2.2
fgets() and gets_s()

31.2.3
memcpy_s() and memmove_s()

31.2.4
Runtime Protection

31.2.5
Compiler-Generated Runtime Checks

31.2.6
Non-Executable Stacks

31.2.7
Stackgap

31.2.8
Runtime Bounds Checkers

31.2.9
Canaries

31.2.10
Stack Smashing Protector (ProPolice)

31.2.11
Libsafe and LibVerify

31.2.12
SafeStr

31.2.13
strcpy_s() and strcat_s()

31.2.14
strcpy() and strcat()

31.2.15
OpenBSD's strlcpy() and strlcat()

31.2.16
strncpy_s() and strncat_s()

31.2.17
strncpy() and strncat()

31.2.18
Strsafe.h

32
Dynamic Memory Management

32.1
Guard Pages

32.2
Heap Integrity Detection

32.3
Null Pointers

32.4
Phkmalloc

32.5
Randomization

1 Introduction

Application Code defects are a primary cause of commonly exploited software vulnerabilities. A number of security experts have analyzed thousands of vulnerability reports, and determined that most application vulnerabilities stem from a relatively small number of common coding errors. By identifying insecure coding practices and developing secure alternatives, developers can take practical steps to reduce or eliminate vulnerabilities in the SDLC before deployment.

The intent of this Secure Coding Standard is to provide direction and guidance to USPTO application developers and programmers to enable them to employ secure programming rules and practices in order to deliver safe, reliable code. Consequently, the rules contained in this document are required for all USPTO code development.

The primary goal of defining the Secure Coding Standard is to organize sets of coding rules that are necessary to ensure security and can be used to help developers understand the kinds of errors that have an impact on security. By better understanding how systems fail, developers will better analyze the systems they create, more readily identify and address security problems when they see them, and generally avoid repeating the same mistakes in the future.

1.1 Secure C++ Coding Practices

Robert C. Seacord, Software Engineering Institute [vita]
Daniel Plakosh, Software Engineering Institute [vita]

Most software vulnerabilities are the result of small but reoccurring programming errors that could be easily avoided if programmers learned to recognize them and understand their potential harm. In particular, the C and C++ programming languages have proved highly susceptible to these classes of errors. This knowledge area of the Build Security In web site describes coding practices that can be used to mitigate against these common problems in C and C++.

Most of the documents in this knowledge area are excerpted from the CERT book Secure Coding in C and C++ [1], written by Robert C. Seacord with contributions from other members of the CERT Coordination Center. The mitigation strategies included in this knowledge area deal primarily with vulnerabilities resulting from programming errors in string manipulation, integer operations, and dynamic memory management. For a more complete description of common programming errors and the resulting vulnerabilities, please see Secure Coding in C and C++.

Secure coding requires an understanding of common programming errors that lead to software vulnerabilities and the knowledge and use of alternative approaches that are less error prone. Secure coding can also benefit from the proper use of software development tools, including compilers. Compilers typically have options that allow increased or specific diagnostics to be performed on code during compilation. Resolving these warnings (by correcting the problem or determining that the warning is superfluous) can improve the security of your deployed software system. Compilers can also provide options that influence runtime settings, such as the /GS flag in Microsoft Visual Studio. Understanding available compiler options and making informed decisions about which options to use and which to omit can help eliminate vulnerabilities and mitigate against runtime exploitation of undiscovered or unresolved vulnerabilities. An example of the use of compiler checks to mitigate against integer vulnerabilities is described in Compiler Checks. Examples of using other static and dynamic analysis tools to discover and mitigate vulnerabilities are described in Runtime Analysis Tools and Heap Integrity Detection.

Mitigation strategies are described, including security, performance, availability, ease of use, and other known quality attributes. We do not attempt to describe the conditions under which one mitigation strategy is preferred to another. Instead, we assume that you (the customer of the information) know what your requirements and constraints are and can make an appropriate selection based on your analysis of this information and the information contained in the referenced resources.

1.2 String Manipulation
1.2.1 C++ std::string

Daniel Plakosh, Software Engineering Institute [vita]

C++ programmers have the option of using the standard std::string class defined in ISO/IEC 14882. The std::string generally protects against buffer overflow.

Development Context

String manipulation

Technology Context

C++, UNIX, Win32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the behavior of the program.

Risk

Standard C string manipulation functions are prone to programmer mistakes that can result in buffer overflow vulnerabilities.

Description

Unbounded string copies are not limited to the C programming language. For example, if a user inputs more than 11 characters into the C++ program shown in Figure 1, an out-of-bounds write will result.

Figure 1. Vulnerable program combining C and C++ standard strings

 1 #include <iostream.h>

 int main() {

 char buf[12];

 cin >> buf;

 5 cout << "echo: " << buf << endl;

 }

The standard object cin is an instantiation of the istream class. The istream class provides member functions to assist in reading and interpreting input from a stream buffer. All formatted input is performed using the extraction operator>>. C++ also defines external operator>> overloaded functions that are global functions and not members of istream, including

istream& operator>> (istream& is, char* str);

This operator extracts characters and stores them in successive locations starting at the location pointed to by str. Extraction ends when the next element is either a valid white space or a null character, or if the end-of-file is reached. A null character is automatically appended after the extracted characters.

The extraction operation can be limited to a specified number of characters (thereby avoiding the possibility of an out-of-bounds write) if the field width inherited member (ios_base::width) is set to a value greater than 0. In this case, the extraction ends one character before the count of characters extracted reaches the value of the field width, leaving space for the ending null character. After a call to this extraction operation, the value of the field width is reset to 0.

Figure 2 contains an improved version of the Figure 1 program that sets the field width member to the length of the character array.

Figure 2. Extracting characters using the field width member

 1 #include <iostream.h>

 int main() {

 char buf[12];

 cin.width(12);

 5 cin >> buf;

 cout << "echo: " << buf << endl;

 }

While setting the field width solves the buffer overflow problem, it does not address the issue of truncation. Therefore, unexpected program behavior could result when the maximum field width is reached and the remainder of characters in the input stream are consumed by the next call to the extractor operator.

C++ programmers have the option of using the standard std::string class defined in ISO/IEC 14882 [ISO/IEC 98]. The std::string class is the char instantiation of the std::basic_string template class, and it uses a dynamic approach to strings in that memory is allocated as required—meaning that in all cases, size() <= capacity(). The std::string class is convenient because the language supports the class directly. Also, many existing libraries already use this class, which simplifies integration.

Figure 3 shows another solution to extracting characters from cin into a string, using std::string instead of a character array. This program is simple, elegant, handles buffer overflows and string truncation, and behaves in a predictable fashion.

Figure 3. Extracting characters from cin into a std::string object

 1 #include <iostream>

 #include <string>

 using namespace std;

 int main() {

 5 string str;

 cin >> str;

 cout << "str 1: " << str << endl;

 }

The std::string generally protects against buffer overflow, but there are still situations in which programming errors can lead to buffer overflows. While C++ generally throws an out_of_range exception when an operation references memory outside the bounds of the string, the subscript operator [] (which does not perform bounds checking) does not [Viega 03].

Another problem occurs when converting std::string objects to C-style strings. If you use string::c_str() to do the conversion, you get a properly null-terminated C-style string. However, if you use string::data(), which writes the string directly into an array (returning a pointer to the array), you get a buffer that is not null terminated. The only difference between c_str() and data() is that c_str() adds a trailing null byte.

Finally, many existing C++ programs and libraries have their own string classes. To use these libraries, you may have to use these string types or constantly convert back and forth. Such libraries are of varying quality when it comes to security. It is generally best to use the standard library (when possible) or to understand the semantics of the selected library. Generally speaking, libraries should be evaluated based on how easy or complex they are to use, the type of errors that can be made, how easy these errors are to make, and what the potential consequences may be.

1.2.2 fgets() and gets_s()

Robert C. Seacord, Software Engineering Institute [vita]

The gets() function is a common source of buffer overflow vulnerabilities and should never be used. The fgets() and gets_s() functions each offer a more secure solution.

Development Context

Reading strings from standard input

Technology Context

C, UNIX, Win32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process.

Risk

The gets() function is a common source of buffer overflow vulnerabilities and should never be used. Programs running with elevated privileges, including programs that are outward facing, can be used for privilege escalation or to launch a remote shell.

Description

There are two alternative functions that can be used: fgets() and gets_s(). Figure 1 shows how all three functions are used.

The fgets() function is defined in C99 [ISO/IEC 99] and has similar behavior to gets() . The fgets() function accepts two additional arguments: the number of characters to read and an input stream. By specifying stdin as the stream, fgets() can be used to simulate the behavior of gets() , as shown in lines 6-10 of Figure 1. The fgets() function, however, retains the new-line character, which means that the function cannot be used as a direct replacement for gets().

The fgets() function reads at most one less than the number of characters specified from the stream into an array. No additional characters are read after a new-line character or after end-of-file. A null character is written immediately after the last character read into the array. The C99 standard does not define how fgets() behaves if the number of characters to read is specified as zero or if the pointer to the character array to be written to is a null.

The gets_s() function is defined by ISO/IEC WDTR 24731 to provide a compatible version of gets() that is less prone to buffer overflow. This function is closer to a direct replacement for the gets() function in that it reads only from the stream pointed to by stdin. The gets() function, however, accepts an additional argument of rsize_t. If this argument is equal to zero or greater than RSIZE_MAX or if the pointer to the character array to be written to is a null, then there is diagnosed undefined behavior, and no input is performed and the character array is not modified. Otherwise, the function reads, at most, one less than the number of characters specified, and a null character is written immediately after the last character read into the array. Lines 11-15 of Figure 1 show how gets_s() can be used in a program.

Figure 1. Use of gets() vs. fgets() vs. gets_s()

 1. #define BUFFSIZE 8

 2. int _tmain(int argc, _TCHAR* argv[]){

 3. char buff[BUFFSIZE];

 // insecure use of gets()

 4. gets(buff);

 5. printf("gets: %s.\n", buff);

 6. if (fgets(buff, BUFFSIZE, stdin) == NULL) {

 7. printf("read error.\n");

 8. abort();

 9. }

10. printf("fgets: %s.\n", buff);

11. if (gets_s(buff, BUFFSIZE) == NULL) {

12. printf("diagnosed undefined behavior.\n");

13. abort();

14. }

15. printf("gets_s: %s.\n", buff);

16. return 0;

17. }

The gets_s() function returns a pointer to the character array if successful. A NULL pointer is returned if the function arguments were invalid, an end-of-file is encountered and no characters have been read into the array, or if a read error occurs during the operation.

The gets_s() function only succeeds if it reads a complete line (that is, it reads a newline character). If a complete line cannot be read, the function returns NULL and sets the buffer to the null string. The function also clears the input stream to the next newline character.

The fgets() and gets_s() functions can still lead to buffer overflows if the specified number of characters to input exceeds the length of the destination buffer.

1.2.3 memcpy_s() and memmove_s()

Daniel Plakosh, Software Engineering Institute [vita]

Substituting the memcpy_s() and memmove_s() functions for the memcpy() and memmove() functions can help guard against software vulnerabilities.

Development Context

Copying characters from one memory location to another.

Technology Context

C++, C, UNIX, Win32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the behavior of the program.

Risk

The memcpy() and memmove() functions are a source of buffer overflow vulnerabilities.

Description

Substituting the memcpy_s() and memmove_s() functions for the memcpy() and memmove() functions can help guard against software vulnerabilities. The memcpy_s() and memmove_s() functions defined in ISO/IEC WDTR 24731 are similar to the corresponding memcpy() and memmove() functions but provide some additional safeguards. These functions have an additional argument that specifies the maximum size of the destination, and they also include a return value that indicates whether the operation was successful. A return value of zero indicates that the operation succeeded. A non-zero return value indicates that the operation failed because it was diagnosed to have an undefined behavior due to an invalid input argument.

The memcpy_s() and memmove_s() functions will be diagnosed to have an undefined behavior if either the source or destination pointer is null, if the specified number of characters to copy or move is greater than the maximum size of the destination buffer, or the number of characters to copy or move or the maximum size of the destination buffer is greater than RSIZE_MAX .1 Additionally, the memcpy_s() function will be diagnosed to have an undefined behavior if the memory regions of the objects overlap.

If the operation is diagnosed to have an undefined behavior, zeros will be stored in the first characters of the destination if the destination pointer is not equal to null and the size of the destination buffer is less than or equal to RSIZE_MAX .

The memcpy_s() function has better performance than the memmove_s() but has additional risks. There is no security related reason to prefer memcpy_s() to memmove_s().

The memcpy_s() and memmove_s() functions are used to copy characters from one memory location to another. The wmemcpy_s() and wmemmove_s() functions are used to copy wide characters.

1.2.4 Runtime Protection

Daniel Plakosh, Software Engineering Institute [vita]

There are a number of runtime solutions that can detect stack corruption and buffer overruns or guard against attacks. These solutions typically terminate the program when an anomaly is detected, preventing the execution of arbitrary code.

Development Context

Program runtime checks and protection techniques that can be used to detect stack corruption and buffer overruns or guard against attacks

Technology Context

C, UNIX, WIN32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the behavior of the program.

Risk

Programming errors can result in buffer overflow vulnerabilities.

Description

There are a number of runtime solutions that can detect stack corruption and buffer overruns or guard against attacks. These solutions typically terminate the program when an anomaly is detected, preventing the execution of arbitrary code. They are not effective at stopping denial-of-service (DoS) attacks unless the program also includes restart processing that is initiated when the program terminates, which would limit the effectiveness of the attack.

Runtime protection strategies should not be used as a substitute for eliminating the source of the vulnerability, as these solutions are often ineffective. There are often many ways to exploit a vulnerability, and many runtime protection schemes only eliminate a subset of these. Runtime protection strategies may be employed as part of a defense-in-depth strategy to mitigate undetected vulnerabilities but should not be solely relied on as a software assurance strategy.

Several runtime solutions are described next.

1.2.5 Compiler-Generated Runtime Checks

Microsoft Visual C++ provides native runtime checks to catch common runtime errors such as stack pointer corruption and overruns of local arrays. The /GS option enables canaries and performs some stack reorganization to prevent common exploits. Visual C++ also provides a runtime_checks pragma that disables or restores the /RTC settings.1

Stack Pointer Corruption. Stack pointer verification detects stack pointer corruption. Stack pointer corruption can be caused by a calling convention mismatch. For example, using a function pointer, you call a function in a DLL that is exported as __stdcall, but you declare the pointer to the function as cdecl.

Overruns of Local Arrays. The /RTCs option enables stack frame run-time error checking for writes outside the bounds of local variables such as arrays. The /RTCs option does not detect overruns when accessing memory that results from compiler padding within a structure. Padding could occur by using align, /Zp, or pack, or if you order structure elements in a way that requires the compiler to add padding.

1.2.6 Non-Executable Stacks

Non-executable stacks are a runtime solution to buffer overflows that are designed to prevent executable code from running in the stack segment. Many operating systems can be configured to use non-executable stacks.

Non-executable stacks are often represented as a panacea in securing against buffer overflow vulnerabilities. However, non-executable stacks do not prevent buffer overflows from occurring in the stack, heap, or data segments. They do not prevent an attacker from using a buffer overflow to modify a return address, variable, data pointer, or function pointer. Non-executable stacks do not prevent arc injection or injection of execution code in the heap or data segments. Not allowing an attacker to run executable code on the stack can prevent the exploitation of some vulnerabilities, but it is often only a minor inconvenience to an attacker.

Depending on how they are implemented, non-executable stacks can affect performance. Non-executable stacks can also break programs that execute code in the stack segment, including Linux signal delivery and Gnu Compiler Collection (GCC) trampolines.

1.2.7 Stackgap

Many exploits for stack-based buffer overflows rely on the fact that the buffer being overflowed is always at the same place in memory. If the attacker can overwrite the function return address, which is at fixed value pointers into the overflow buffer, execution of the attacker-supplied code starts. A straightforward solution to this problem is to introduce a randomly sized gap of space upon allocation of stack memory [de Raadt 03].

This technique gives a disadvantage to the attacker while wasting at most 1 page of real memory. This mitigation can be easily added to Linux systems because it requires only a small change to the kernel, as shown in Figure 1.

Figure 1. Linux kernel modification to support stackgap

1. sgap = STACKGAPLEN;

2. if (stackgap_random != 0)

 sgap += (arc4random() * ALIGNBYTES) & (stackgap_random - 1);

 /* Now check if args & environ fit into new stack */

3. len = ((argc + envc + 2 + pack.ep_emul->e_arglen) *

 sizeof(char *) + sizeof(long) + dp + sgap +

 sizeof(struct ps_strings)) - argp;
1.2.8 Runtime Bounds Checkers

If using a type-safe language such as Java or C# is impractical, it may still be possible to use a compiler that performs array bounds checking for C programs.

Jones and Kelley [Jones 97] propose an approach for bounds checking using referent objects. This approach is based on the principle that an address computed from an in-bounds pointer must share the same referent object as the original pointer. Unfortunately, there are a surprisingly large number of programs that generate and store out-of-bounds addresses and later retrieve these values in their computation without causing buffer overflows—making these programs incompatible with this bounds-checking approach. This approach to runtime bounds checking also had significant performance costs, particularly in pointer-intensive programs, where performance may slow down by up to 30 times [Cowan 00].

Ruwase and Lam have improved the Jones and Kelley approach in their C Range Error Detector (CRED) [Ruwase 04]. CRED enforces a relaxed standard of correctness by allowing program manipulations of out-of-bounds addresses that do not result in buffer overflows. This relaxed standard of correctness provides higher compatibility with existing software.

CRED can be configured to check all bounds of all data or of string data only. Full bounds checking, like the Jones and Kelley approach, imposes significant performance overhead on most programs. Limiting the bounds checking to strings improves the performance for most programs. Overhead ranges from 1% to 130% depending on the use of strings in the application.

Bounds checking is effective in preventing most overflow conditions but is not perfect. The CRED solution, for example, is unable to detect conditions where an out-of-bounds pointer is cast to an integer, used in an arithmetic operation, and cast back to a pointer. The approach does prevent overflows in the stack, heap, and data segments. CRED was effective in detecting 20 different buffer overflow attacks developed by Wilander and Kamkar for evaluating dynamic buffer overflow detectors [Wilander 03], even when optimized to check only for overflows in strings.

CRED has been merged into the latest Jones and Kelly checker for GCC 3.3.1, which is currently maintained by Herman ten Brugge.

1.2.9 Canaries

Canaries are another mechanism used to eliminate stack smashing attacks. Instead of performing generalized bounds checking, canaries are used to protect the return address on the stack from sequential writes through memory (for example, resulting from a strcpy()). Canaries consist of a hard-to-insert or hard-to-spoof value written to an address below the section of the stack being protected. A sequential write would therefore need to overwrite this value on the way to the protected region. The canary is initialized immediately after the return address is saved and checked immediately before the return address is accessed.

A hard-to-insert or terminator canary consists of four different string terminators (CR, LF, Null, and -1). This guards against buffer overflows caused by string operations but not memory copy operations.

A hard-to-spoof or random canary is basically a 32-bit secret random number that changes each time the program is executed. This approach works well as long as the canary remains a secret.

Canaries are implemented in StackGuard [Cowan 98]. Various StackGuard versions have been used with GCC for Immunix OS 6.2, 7.0, and 7+. Red Hat 7.3 will merge StackGuard 3 into the GCC 3.x mainline compiler. Canaries have also been used in ProPolice and Microsoft’s Visual C++ .Net.

Canaries are useful only against exploits that overflow a buffer on the stack and attempt to overwrite the stack pointer or other protected region. Canaries do not protect against exploits that modify variables, data pointers, or function pointers. Canaries do not prevent buffer overflows from occurring in any location, including the stack segment.

In fact, neither the terminator nor random canary offers complete protection against exploits that overwrite the return address. Exploits that write four bytes directly to the location of the return address on the stack can defeat terminator and random canaries [Bulba 00]. To solve these direct access exploits, StackGuard added Random XOR canaries [Wagle 03] that XOR the return address with the canary. Again, this works well as long as the canary remains a secret.

1.2.10 Stack Smashing Protector (ProPolice)

A popular mitigation approach derived from StackGuard is the GCC Stack Smashing Protector (SSP, also known as ProPolice) [Etoh 04]. SSP is a GCC extension for protecting applications written in C from the most common forms of stack buffer overflow exploits and is implemented as an intermediate language translator of GCC. SSP provides buffer overflow detection and the variable reordering to avoid the corruption of pointers. Specifically, SSP

· reorders local variables to place buffers after pointers to avoid the corruption of pointers that could be used to further corrupt arbitrary memory locations

· copies pointers in function arguments to an area preceding local variable buffers to prevent the corruption of pointers that could be used to further corrupt arbitrary memory locations

· omits instrumentation code from functions that contain character arrays to decrease the performance overhead

The SSP feature is enabled using gcc options. The -fstack-protector and -fno-stack-protector options respectively enable and disable stack smashing protection. The -fstack-protector-all and -fno-stack-protector-all options enable and disable the protection of every function, not just the functions with character arrays.

SSP works by introducing a guard variable to prevent changes to the arguments, return address, and previous frame pointer. Given the source code of a function, a preprocessing step inserts code fragments into appropriate locations as follows:

· Declaration of local variables

· volatile int guard;

· Entry point

· guard = guard_value;

· Exit point

· if (guard != guard_value) {

· /* output error log */

· /* halt execution */

· }

A random number is used as the guard value at the initialization time of the application, preventing discovery by a non-privileged user. SSP also provides a safer stack structure, as shown in Figure 2.

Figure 2. SSP safe frame structure

[image: image1.png]
This structure establishes the following constraints:

· Location (A) has no array or pointer variables.

· Location (B) has arrays or structures that contain arrays.

· Location (C) has no arrays.

Placing the guard after the section containing the arrays (B) prevents a buffer overflow from overwriting the arguments, return address, previous frame pointer, or local variables.

1.2.11 Libsafe and LibVerify

Libsafe is a dynamic library available from Avaya Labs Research for limiting the impact of buffer overflows on the stack. The library intercepts and bounds checks arguments to C library functions that are susceptible to buffer overflow [Baratloo 00]. The library makes sure that frame pointers and return addresses cannot be overwritten by an intercepted function. The libverify library, also described by Baratloo et al. [Baratloo 00], implements a return address verification scheme similar to that used in StackGuard but does not require recompilation of source code, which allows it to be used with existing binaries.

Summary

Runtime solutions such as bounds checkers, canaries, and safe libraries also have a runtime performance cost and sometimes compete with each other. For example, it may not make sense to use a canary in conjunction with safe libraries because each performs more or less the same function in a different way.

1.2.12 SafeStr

Daniel Plakosh, Software Engineering Institute [vita]

The C String Library (SafeStr) from Messier and Viega provides a rich string-handling library for C that has secure semantics yet is interoperable with legacy library code in a straightforward manner.

Development Context

String manipulation

Technology Context

C, UNIX, Win32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the behavior of the program.

Risk

Standard C string manipulation functions are prone to programmer mistakes that can result in buffer overflow vulnerabilities.

Description

The C String Library (SafeStr) from Messier and Viega provides a rich string-handling library for C that has secure semantics yet is interoperable with legacy library code in a straightforward manner [Messier 03].

The SafeStr library uses a dynamic approach for C that automatically resizes strings as required. SafeStr accomplishes this by reallocating memory and moving the contents of the string whenever an operation requires that a string grow in size.

The SafeStr library is built around the safestr_t type. The safestr_t type is compatible with char * and allows safestr_t structures to be cast as char * and behave as C-style strings. These strings cannot be freed by a call to free() and cannot be manipulated as a SafeStr again once modified. The safestr_t type keeps accounting information (e.g., the actual and allocated length) in memory directly preceding the memory referenced by the pointer.

The SafeStr library supports immutable strings. Strings can be specified as immutable during initialization or by calling

void safestr_makereadonly(safestr_t);

Immutable strings cannot be modified using the SafeStr API. However, the memory can still be overwritten. The library only prevents writes initiated through SafeStr functions.

The SafeStr API can help track trusted and untrusted data in the style of Perl’s taint mode. A developer can use this mechanism to mark strings originating from untrusted sources as such. Strings that have been checked for potentially malicious input could subsequently be marked as trusted. When modifying a string, the trusted property of that string is set to ”untrusted” if any of the operands are untrusted. When creating a new string from operations on other strings, the new string is marked as trusted only if all the strings that influence its value are trusted.

The trust property will not properly propagate if the SafeStr API is circumvented. The SafeStr API does not currently provide any routines that check the trusted flag. However, you can explicitly check the flag yourself as shown in Figure 1.

Figure 1. Trusted and untrusted data in SafeStr

1. int safer_system(safestr_t cmd) {

2. if (!safestr_istrusted(cmd)) {

3. printf("Untrusted data in safer_system!\n");

4. abort();

5. }

6. return system((char *)cmd);

7. }

Error handling in SafeStr is performed using XXL, a library that provides both exceptions and asset management for C and C++. The caller is responsible for handling exceptions thrown by SafeStr and XXL. If no exception handler is specified, the default action is to output a message to stderr and call abort(). The dependency on XXL can sometimes be an issue because both libraries need to be adopted to support this solution.

SafeStr is released under an open source BSD-style license.

1.2.13 strcpy_s() and strcat_s()

Daniel Plakosh, Software Engineering Institute [vita]

The strcpy_s() and strcat_s() functions are defined in ISO/IEC TR 24731 as a close replacement for strcpy() and strcat(). These functions have an additional argument that specifies the maximum size of the destination and also include a return value that indicates whether the operation was successful.

Development Context

Copying and concatenating character strings

Technology Context

C, UNIX, Win32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the behavior of the program.

Risk

The strcpy() and strcat() functions are a source of buffer overflow vulnerabilities.

Description

The strcpy_s() and strcat_s() functions are defined in ISO/IEC WDTR 24731 as a close replacement for strcpy() and strcat(). These functions have an additional argument that specifies the maximum size of the destination and also include a return value that indicates whether the operation was successful.

The strcpy_s() function is similar to strcpy() if a constraint violation does not occur. In this case, the strcpy_s() function copies characters from the source string to the destination character array up to and including the terminating null character and then returns zero to indicate success.

The strcpy_s() function only succeeds when the source string can be fully copied to the destination without overflowing the destination buffer. If either the source or destination pointers are null or if the maximum length of the destination buffer is equal to zero, greater than RSIZE_MAX,1 or less than or equal to the length of the source string, then a constraint violation occurs and the operation returns a non-zero value. Additionally, the strcpy_s() function will result in a constraint violation if the memory regions of the objects overlap. If a constraint violation occurs, a zero is stored in the first character of the destination if the destination pointer is not equal to null and the size of the destination buffer is greater than zero and less than or equal to RSIZE_MAX.

The strcat_s() function appends the characters of the source string, up to and including the null character, to the end of the destination string. The initial character from the source string overwrites the null character at the end of the destination string.

The strcat_s() function returns zero on success. A constraint violation will occur and the operation will return a non-zero value if

· either (a) the source or destination pointer is null or the maximum length of the destination buffer is equal to zero or greater than RSIZE_MAX or (b) the destination string is already full or there is not enough room to fully append the source string

· the memory regions of the objects overlap

If a constraint violation occurs, a zero is stored in the first character of the destination if the destination pointer is not equal to null and the size of the destination buffer is greater than zero and less than or equal to RSIZE_MAX.

The strcpy_s() and strcat_s() functions can still result in a buffer overflow if the maximum length of the destination buffer is incorrectly specified.

1.2.14 strcpy() and strcat()

Daniel Plakosh, Software Engineering Institute [vita]

The strcpy() and strcat() functions have been villainized as a major source of buffer overflows, and there are many mitigation strategies that provide more secure variants of these functions. However, not all applications of strcpy() are flawed.

Development Context

Copying and concatenating character strings

Technology Context

C, UNIX, Win32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the behavior of the program.

Risk

The strcpy() and strcat() functions are a source of buffer overflow vulnerabilities.

Description

The strcpy() and strcat() functions have been villainized as a major source of buffer overflows, and there are many mitigation strategies (such as strcpy_s() and strcat_s()) that provide more secure variants of these functions. However, not all applications of strcpy() are flawed. For example, assuming source has been properly validated, it is often possible to dynamically allocate the required space as follows:

dest = (char *)malloc(strlen(source) + 1);

if (dest) {

 strcpy(dest, source);

}

else { /* Handle memory allocation error */

 …

}

There are also other cases where it is clear that there is no potential for writing beyond the array bounds.

As a result, it may not be cost effective to replace or otherwise secure every call to strcpy(). This depends on the overall mitigation strategy adopted, as some strategies require an overall retooling of string manipulation logic.

1.2.15 OpenBSD's strlcpy() and strlcat()

Daniel Plakosh, Software Engineering Institute [vita]

Many UNIX variants provides the strlcpy() and strlcat() functions to copy and concatenate strings in a less error-prone manner.

Development Context

Copying and concatenating character strings

Technology Context

C, UNIX, FreeBSD, OpenBSD, NetBSD, MacOS X, Solaris

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the behavior of the program.

Risk

The strcpy() and strcat() functions are a source of buffer overflow vulnerabilities.

Description

Many UNIX variants provide the strlcpy() and strlcat() functions to copy and concatenate strings in a less error-prone manner. These functions’ prototypes are as follows:

size_t strlcpy(char *dst, const char *src, size_t size);

size_t strlcat(char *dst, const char *src, size_t size);

The strlcpy() function copies the null-terminated string from src to dst (up to size characters). The strlcat() function appends the null-terminated string src to the end of dst (but no more than size characters will be in the destination).

To help prevent writing outside the bounds of the array, the strlcpy() and strlcat() functions accept the full size of the destination string as a size parameter. For statically allocated buffers, this value is easily computed at compile time using the sizeof() operator.

Both functions guarantee that the destination string is null terminated for all non-zero-length buffers to prevent null-termination errors.

The strlcpy() and strlcat() functions return the total length of the string created. For strlcpy() that is simply the length of the source; for strlcat() it is the length of the destination (before concatenation) plus the length of the source. To check for truncation, the programmer need only verify that the return value is less than the size parameter. If the resulting string is truncated, the programmer now knows the number of bytes needed to store the entire string and may reallocate and recopy. This helps prevent errors resulting from an unintentional loss of data.

Neither strlcpy() nor strlcat() zero-fills its destination strings (other than the compulsory null byte to terminate the string). This results in performance close to that of strcpy() and much better than strncpy() [ISO/IEC 99]. Table 1 shows the elapsed time required to copy the string ”this is just a test” 1000 times into a 1024 byte buffer [Miller 99].

Table 1. Performance in seconds

	CPU
	Function
	Time (sec.)

	mk68
	strcpy()
	0.137

	mk68
	strncpy()
	0.464

	mk68
	strlcpy()
	0.140

	alpha
	strcpy()
	0.018

	alpha
	strncpy()
	0.100

	alpha
	strlcpy()
	0.020

Unfortunately, strlcpy() and strlcat() are not universally available in the standard libraries of UNIX systems. Both functions are defined in string.h for many UNIX variants, including OpenBSD and Solaris, but not for GNU/Linux. Because these are relatively small functions, however, you can easily include them in your own program's source whenever the underlying system doesn't provide them.

1.2.16 strncpy_s() and strncat_s()

Daniel Plakosh, Software Engineering Institute [vita]

The strncpy() and strncat() functions are a source of buffer overflow vulnerabilities. The strncpy_s() and strncat_s() functions are defined in ISO/IEC TR 24731 as drop-in replacements for strncpy() and strncat().

Development Context

Copying and concatenating character strings
Technology Context

C, UNIX, Win32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the behavior of the program.

Risk

The strncpy() and strncat() functions are a source of buffer overflow vulnerabilities.

Description

The strncpy_s() and strncat_s() functions are defined in ISO/IEC WDTR 24731 as drop-in replacements for strncpy() and strncat().

The strncpy_s() function copies not more than a specified number of successive characters (characters that follow a null character are not copied) from a source string to a destination character array. If no null character was copied, the last character of the destination character array is set to a null character.

The strncpy_s() function returns zero to indicate success. If a constraint violation occurs, strncpy_s() returns a non-zero value and sets the destination string to the null string if the destination pointer is not equal to null and the size of the destination buffer is greater than zero and less than or equal to RSIZE_MAX.1

A constraint violation occurs if

· either (a) the source or destination pointer is null or (b) the maximum size of the destination string is zero or greater than RSIZE_MAX

· the specified number of characters to be copied exceeds RSIZE_MAX

· the memory regions of the objects overlap

A strncpy_s() operation can actually succeed when the number of characters specified to be copied exceeds the maximum length of the destination string as long as the actual source string is shorter than the maximum length of the destination string. If the number of characters to copy is greater than or equal to the maximum size of the destination string and the source string is longer than the destination buffer, the operation will fail.

Figure 1. Sample use of strncpy_s() function

1. char src1[100] = "hello";

2. char src2[7] = {"g","o","o","d","b","y","e"};

3. char dst1[6], dst2[5], dst3[5];

4. int r1, r2, r3;

5. r1 = strncpy_s(dst1, 6, src1, 100);

6. r2 = strncpy_s(dst2, 5, src2, 7);

7. r3 = strncpy_s(dst3, 5, src2, 4);

Users of these functions are less likely to introduce a security flaw because the size of the destination buffer and the maximum number of characters to append must be specified. The strncat_s() function also ensures null termination of the destination string. For example, the first call to strncpy_s() on line 5 of the sample program shown in Figure 1 assigns the value zero to r1 and the sequence hello\0 to dst1. The second call on line 6 assigns a non-zero value to r2 and the sequence \0 to dst2. The third call on line 7 assigns the value zero to r3 and the sequence good\0 to dst3. If strncpy() had been used instead of strncpy_s(), a buffer overflow would have occurred during the execution of line 6.

The strncat_s() function appends not more than a specified number of successive characters (characters that follow a null character are not copied) from a source string to a destination character array. The initial character from the source string overwrites the null character at the end of the destination array. If no null character was copied from the source string, a null character is written at the end of the appended string.

The strncat_s() function fails and returns a non-zero value (indicating an undefined behavior) if any of the following occurs:

· either (a) the source or destination pointer is null or (b) the maximum length of the destination buffer is equal to zero or greater than RSIZE_MAX or the memory regions of the objects overlap

· the destination string is already full

· there is not enough room to fully append the source string

If a constraint violation occurs, the destination string will be set to null if the destination pointer is not equal to null and the size of the destination buffer is greater than zero and less than or equal to RSIZE_MAX.

The strncpy_s() and strncat_s() functions are still capable of overflowing a buffer if the maximum length of the destination buffer and number of characters to copy are incorrectly specified.

1.2.17 strncpy() and strncat()

Daniel Plakosh, Software Engineering Institute [vita]

The standard C library includes functions that are designed to prevent buffer overflows, particularly strncpy() and strncat(). These universally available functions discard data larger than the specified length, regardless of whether it fits into the buffer. These functions are deprecated for new Windows code because they are frequently used incorrectly.

Development Context

Copying and concatenating character strings

Technology Context

C, UNIX, Win32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the behavior of the program.

Risk

Improper use of the strncpy() and strncat() functions can result in buffer overflow vulnerabilities.

Description

The standard C library includes functions that are designed to prevent buffer overflows, particularly strncpy() and strncat(). These universally available functions discard data larger than the specified length, regardless of whether it fits into the buffer. These functions are deprecated for new Windows code because they are frequently used incorrectly.

The strncpy() library function performs a similar function to strcpy() but allows a maximum size to be specified:

strncpy(dest, source, dest_size - 1);

dest[dest_size - 1] = ’\0’;

The strcat() function concatenates a string to the end of a buffer. Like strcpy(), strcat() has a more secure version, strncat(). Functions like strncpy() and strncat() restrict the number of bytes written and are generally more secure, but they are not foolproof. The following is an actual example of code that can result from a simplistic transformation of existing code:

strncpy(record, user, MAX_STRING_LEN - 1);

strncat(record, cpw, MAX_STRING_LEN - 1);

The problem is that the last argument to strncat() should not be the total buffer length, it should be the space remaining after the call to strncpy(). Both functions require that you specify the remaining space and not the total size of the buffer. Because the remaining space changes every time data is added or removed, programmers must track or constantly recompute the remaining space. These processes are error prone and can lead to vulnerabilities, but the following call correctly calculates the remaining space when concatenating a string using strncat():

strncat(dest, source, dest_size-strlen(dest)-1);

Another problem with strncpy() and strncat() is that neither function provides a status code or reports when the resulting string is truncated. Both functions return a pointer to the destination buffer, requiring significant effort by the programmer to determine whether the resulting string was truncated.

The strncpy() function doesn't null terminate the destination string if the source string is at least as long as the destination. As a result, the destination string must be null terminated after calling strncpy(). In certain circumstances, a failure to null-terminate could lead to a buffer overflow vulnerability.

There's also a performance problem with strncpy() in that it fills the entire destination buffer with null bytes after the source data has been exhausted. Although there is no good reason for this behavior, programs now depend on it and it is difficult to change.

1.2.18 Strsafe.h

Daniel Plakosh, Software Engineering Institute [vita]

Microsoft provides a set of safer string handling functions for the C programming language called Strsafe.h. These functions are intended to replace their built-in C/C++ counterparts, as well as any legacy Microsoft-specific string handing functions.

Development Context

String manipulation

Technology Context

C/C++, Win32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the behavior of the program.

Risk

Standard C string manipulation functions are prone to programmer mistakes that can result in buffer overflow vulnerabilities.

Description

Microsoft provides a set of safer string handling functions for the C programming language called Strsafe.h [MSDN 05]. There is also ntstrsafe.h for kernel mode code. These functions are intended to replace their built-in C/C++ counterparts, as well as any legacy Microsoft-specific string handing functions.

These functions support both ANSI and Unicode characters, always return a status code, and require that the programmer always specifies the size of the destination buffer. Separate functions are provided that allow the programmer to specify the size of the destination buffer using either character or byte counts.

The Microsoft Strsafe library functions guarantee that all strings are null terminated (even if they are truncated) and that a write does not occur past the end of the destination buffer. This is all true and these functions are safe as long as the programmer inputs the actual starting address of the destination buffer and correct length. Thus care still must be taken when using these functions.

Figure 1 shows an example program that performs a secure string copy on line 8 and a secure string concatenation on line 11.

Figure 1. Microsoft Strsafe example

 1. #include <Strsafe.h>

 2. int _tmain(int argc, _TCHAR* argv[])

 3. {

 4. char MyString[128];

 5. HRESULT Res;

 6. Res=StringCbCopy(MyString, sizeof(MyString), "Program 1. Name is ");

 7. if (Res != S_OK) {

 8. printf("StringCbCopy Failed: %s\n", MyString);

 9. exit(-1);

10. }

11. Res=StringCbCat(MyString,sizeof(MyString),argv[0]);

12. if (Res != S_OK) {

13. printf("StringCbCat Failed: %s\n", MyString);

14. exit(-1);

15. }

16. printf("%s\n", MyString);

17. return 0;

18. }

It is also important to remember that the Strsafe functions, such as StringCchCopy() and StringCchCat(), do not have the same semantics as the Microsoft CRT functions strncpy_s() and strncat_s(). When strncat_s() detects an error it sets the destination string to a null string, while StringCchCat() fills the destination with as much data as possible and then null terminates the string.

Vstr

Daniel Plakosh, Software Engineering Institute [vita]

Vstr is a string library optimized to work with readv()/writev() for input/output. For example, you can readv() data to the end of the string and writev() data from the beginning of the string without allocating or moving memory. This also allows the library to work with data containing multiple zero bytes.

Development Context

String input and output

Technology Context

C, UNIX

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the behavior of the program.

Risk

C-style string input and output functions are prone to programmer mistakes that can result in buffer overflow vulnerabilities.

Description

Vstr is a string library optimized to work with readv()/writev() for input/output [Antill 05]. For example, you can readv() data to the end of the string and writev() data from the beginning of the string without allocating or moving memory. This also allows the library to work with data containing multiple zero bytes.

Figure 1 shows a simple example of a program that uses Vstr to print out ”Hello World.” The library is initialized on line 8 of this example. The call to the vstr_dup_cstr_buf() function on line 9 creates a vstr from a C-style string literal. The string is then output to the user using the vstr_sc_write_fd () function on line 12. This call to the vstr_sc_write_fd () function writes the contents of the s1 vstr to STDOUT. Lines 15 and 16 of the example are used to clean up allocated resources.

Unlike most string libraries, Vstr does not have an internal representation of the string that allows direct access from a character pointer. Instead, the internal representation is of multiple nodes, each containing a portion of the string data. This data representation model means that memory usage increases linearly as a string gets larger. Adding, substituting, or moving data anywhere in the string can be optimized to require O(1) copying instead of O(n). Because of the dynamic memory management, use of the Vstr library should eliminate the possibility of buffer overflow in string handling, although the security implications of using the library have not been thoroughly evaluated.

Figure 1. Hello world using Vstr

 1. #define VSTR_COMPILE_INCLUDE 1

 2. #include <vstr.h>

 3. #include <errno.h>

 4. #include <err.h>

 5. #include <unistd.h>

 6. int main(void) {

 7. Vstr_base *s1 = NULL;

 8. if (!vstr_init()) err(EXIT_FAILURE, "init");

 9. if (!(s1 = vstr_dup_cstr_buf(NULL, "Hello World\n")))

10. err(EXIT_FAILURE, "Create string");

11. while (s1->len)

12. if (!vstr_sc_write_fd(s1, 1, s1->len, STDOUT_FILENO, NULL)) {

13. if ((errno != EAGAIN) && (errno != EINTR)) err(EXIT_FAILURE, "write");

14. }

15. vstr_free_base(s1);

16. vstr_exit();

17. exit (EXIT_SUCCESS);

18. }

2 Dynamic Memory Management
2.1 Guard Pages

Daniel Plakosh, Software Engineering Institute [vita]

Automatic allocation of additional inaccessible memory during memory allocation operations is a technique for mitigating against exploitation of heap buffer overflows. These guard pages are unmapped pages placed between all memory allocations of one page or larger. The guard page causes a segmentation fault upon any access.

Development Context

Dynamic memory management

Technology Context

C++, C, UNIX, Win32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the behavior of the program.

Risk
Standard C dynamic memory management functions such as malloc() , calloc(), realloc(), and free() [ISO/IEC 99] are prone to programmer mistakes that can lead to vulnerabilities resulting from buffer overflow in the heap, writing to already freed memory, and freeing the same memory multiple times (e.g., double-free vulnerabilities).

Description

Automatic allocation of additional inaccessible memory during memory allocation operations is a technique for mitigating against exploitation of heap buffer overflows. These guard pages are unmapped pages placed between all allocations of memory that are the size of one page or larger. The guard page causes a segmentation fault upon any access. As a result, any attempt by an attacker to overwrite adjacent memory in the course of exploiting a buffer overflow causes the vulnerable program to terminate rather than continue execution of the attacker-supplied code. Guard pages are implemented by a number of systems and tools, including OpenBSD, Electric Fence, and Application Verifier (each of which is discussed further in this content area).

Guard pages have a high degree of overhead because they fragment the kernel’s memory map and can increase the amount of virtual space considerably. Their effectiveness depends on the size and pattern of allocations; they are often more effective as a debugging facility than an operational security measure.

2.2 Heap Integrity Detection

Daniel Plakosh, Software Engineering Institute [vita]

This article describes a system to protect the glibc heap by making modifications to the chunk structure and management functions.

Development Context

Dynamic memory management

Technology Context

C, glibc, GCC, dlmalloc

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the behavior of the program.

Risk

Standard C dynamic memory management functions such as malloc() , calloc() , realloc() , and free() [ISO/IEC 99] are prone to programmer mistakes that can lead to vulnerabilities resulting from buffer overflow in the heap, writing to already freed memory, and freeing the same memory multiple times (e.g., double-free vulnerabilities).

Description

Robertson and colleagues devised a system to protect the glibc heap by making modifications to the chunk structure and management functions [Robertson 03].

Figure 1. Modified memory chunk structure

1. struct malloc_chunk {

2. INTERNAL_SIZE_T magic;

3. INTERNAL_SIZE_T __pad0;

4. INTERNAL_SIZE_T prev_size;

5. INTERNAL_SIZE_T size;

6. struct malloc_chunk *bk;

7. struct malloc_chunk *fd;

8. };

This heap integrity scheme prepends a canary and padding field to the chunk structure as shown in Figure 1. The canary contains a checksum of the chunk header seeded with a random value. The global checksum seed value is stored in the __heap_magic static variable. This variable is initialized during process startup with a random value, which is then protected against further writes by mprotect().1

The heap protection system also augments the heap management functions with code to manage and check each chunk’s canary. The canary in a newly allocated chunk is initialized to a checksum that includes its memory location and size fields and is seeded with the global value of __heap_magic. When a chunk is returned by a call to free(), the chunk’s canary is checked against the checksum calculated when the chunk was allocated. If the checksums do not match, an exception is raised and the process is aborted.

2.3 Null Pointers

Daniel Plakosh, Software Engineering Institute [vita]

One obvious technique to reduce vulnerabilities in C and C++ programs is to set the pointer to null after the call to free() has completed.

Development Context

Dynamic memory management

Technology Context

C, UNIX, Win32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the behavior of the program.

Risk

Standard C dynamic memory management functions such as malloc() , calloc() , realloc(), and free() [ISO/IEC 99] are prone to programmer mistakes that can lead to vulnerabilities resulting from buffer overflow in the heap, writing to already freed memory, and freeing the same memory multiple times (e.g., double-free vulnerabilities).

Description

One obvious technique to reduce vulnerabilities in C and C++ programs is to set the pointer to null after the call to free() has completed. Dangling pointers (pointers to already freed memory) can result in writing to freed memory and double-free vulnerabilities. Any attempt to dereference the pointer will result in a fault, which increases the likelihood that the error will be detected during implementation and test. Also, if the pointer is set to null, the memory can be freed multiple times without consequence.

While setting the pointer to null should significantly reduce vulnerabilities resulting from writing to freed memory and double-free vulnerabilities, it cannot prevent them when multiple pointers all reference the same data structure. Unfortunately, memory management in C and C+ must be performed with great care.

2.4 Phkmalloc

Robert C. Seacord, Software Engineering Institute [vita]

Phkmalloc is an alternative dynamic memory management function that was by written by Poul-Henning Kamp for FreeBSD in 1995-1996 and subsequently adapted by a number of operating systems, including NetBSD, OpenBSD, and several Linux distributions.

Development Context

Dynamic memory management

Technology Context

C, UNIX, Win32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the behavior of the program.

Risk

Standard C dynamic memory management functions such as malloc(), calloc(), and free() [ISO/IEC 99] are prone to programmer mistakes that can lead to vulnerabilities resulting from buffer overflow in the heap, writing to already freed memory, and freeing the same memory multiple times (e.g., double-free vulnerabilities).

Description

Phkmalloc was by written by Poul-Henning Kamp for FreeBSD in 1995-1996 and subsequently adapted by a number of operating systems, including NetBSD, OpenBSD, and several Linux distributions.

Phkmalloc was written to operate efficiently in a virtual memory system, which resulted in stronger checks. The stronger checks led to the discovery of memory management errors in some applications and the idea of using phkmalloc to expose and protect against malloc-API mistakes and misuse [Kamp 98]. This was possible because of phkmalloc’s inherent mistrust of the programmer. Phkmalloc can determine whether a pointer passed to free() or realloc() is valid without dereferencing it. Phkmalloc cannot detect if a wrong (but valid) pointer is passed, but can detect all pointers that were not returned by malloc() or realloc(). Because phkmalloc can determine whether a pointer is allocated or free, it detects all double-free errors. For unprivileged processes, these errors are treated as warnings, meaning that the process can survive without any danger to the malloc data structures. However, enabling the “A” or “abort” option causes these warnings to be treated as errors. An error is terminal and results in a call to abort(). Some configurable options for phkmalloc that have security implications are shown in Table 1.

Table 1. Phkmalloc options

	Flag
	Description

	A
	“Abort.” malloc() will core dump the process rather than tolerate failure. The core file will represent the time of failure rather than when the NULL pointer was accessed.

	X
	Instead of returning an error for any allocation function, display a diagnostic message on stderr and call abort().

	J
	“Junk.” Fill some junk into the area allocated. Currently junk is bytes of 0xd0.

	Z
	“Zero.” Fill some junk into the area allocated (see J), except for the exact length the user asked for, which is zeroed.

After the CVS double-free vulnerability , the “A” option was made automatic and mandatory for sensitive processes (which were somewhat arbitrarily defined as setuid, setgid, root, or wheel processes):

if (malloc_abort || issetugid() || getuid() == 0 || getgid() == 0) abort();

A more complete description of the CVS Server vulnerability and the security implications of phkmalloc can be found in [Smashing 05].

Due to the success of pointer checks, the J(unk) and Z(ero) options were added to find even more memory management defects. The J(unk) option fills the allocated area with the value 0xd0 because when four of these bytes are turned into a pointer (0xd0d0d0d0), it references the kernel’s protected memory so that the process will core dump with a segfault. The Z(ero) option also fills the memory with junk except for the exact length the user asked for, which is zeroed. FreeBSD’s version of phkmalloc can also provide a trace of all malloc/free/realloc requests using the ktrace() facility with the “U” option.

Phkmalloc has been used to discover memory management defects in fsck, ypserv, cvs, mountd, inetd, and other programs.

Phkmalloc determines which options are set by scanning for flags in the following locations:

· the symbolic link /etc/malloc.conf

· the environment variable MALLOC_OPTIONS

· the global variable malloc_options

Flags are single letters; upper case means on, lower case means off.

2.5 Randomization

Robert C. Seacord, Software Engineering Institute [vita]

Randomization works on the principle that it is harder to hit a moving target. Addresses of memory allocated by malloc() are fairly predictable. Randomizing the addresses of blocks of memory returned by the memory manager can make it more difficult to exploit a heap-based vulnerability.

Development Context

Dynamic memory management

Technology Context

C++, C, UNIX, Win32

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the behavior of the program.

Risk

Standard C dynamic memory management functions such as malloc(), calloc(), and free() [ISO/IEC 99] are prone to programmer mistakes that can lead to vulnerabilities resulting from buffer overflow in the heap, writing to already freed memory, and freeing the same memory multiple times (e.g., double-free vulnerabilities).

Description

Randomization works on the principle that it is harder to hit a moving target. Addresses of memory allocated by malloc() are fairly predictable. Randomizing the addresses of blocks of memory returned by the memory manager can make it more difficult to exploit a heap-based vulnerability.

Randomizing memory addresses can occur in multiple locations. For both the Windows and UNIX operating systems, the memory manager requests memory pages from the operating system, which are then broken up into small chunks and managed as required by the application process. It is possible to randomize both the pages returned by the operating system and the addresses of chunks returned by the memory manager.

The OpenBSD kernel, for example, uses mmap() to allocate or map additional memory pages. The mmap() function will return a random address each time an allocation is performed, as long as the MAP_FIXED flag is not specified. The malloc() function can also be configured to return random chunks.

The result is that each time a program is run, it exhibits different address space behavior, thereby making it harder for an attacker to guess the location of memory structures that must be overwritten to exploit a vulnerability.

Because randomization can make debugging difficult, it can usually be enabled or disabled at runtime. Also, randomization adds an unpredictable, but often significant, performance overhead.

C++ inherits a host of opportunities for type violations from C and adds a few of its own.
– Bjarne Stroustrup, "A rationale for semantically enhanced library languages"

00. Preprocessor (PRE)
01. Declarations (DCL)
02. Expressions (EXP)
03. Integers (INT)
04. Floating Point Arithmetic (FLP)
05. Arrays (ARR)
06. Dangling Pointers (DAN)
07. Errors and Exceptions (ERR)
08. Resource Management (RES)
09. Object Orientation (OBJ)
10. Basic String Class (BSC)
11. Null-Terminated Byte Strings (STR)
12. Vectors (VEC)
13. STL (STL)
14. Input Output (FIO)
15. Miscellaneous (MSC)
AA. C++ References
� References

[ISO/IEC 99]�
ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01 Programming languages — C. International Organization for Standardization, 1999.�
�
[ISO/IEC 98]�
Joint Technical Committee ISO/IEC JTCI; International Organization for Standardization; and International Electrotechnical Commission. Programming Languages — C++. Geneva, Switzerland: ISO/IEC, 1998.�
�
[Viega 03]�
Viega, John & Messier, Matt. Secure Programming Cookbook for C and C++: Recipes for Cryptography, Authentication, Networking, Input Validation & More. Sebastopol, CA: O'Reilly, 2003 (ISBN: 0-596-00394-3).�
�
Pearson Education, Inc. Copyright

This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006 by Pearson Education, Inc., published as a CERT® book in the SEI Series in Software Engineering. All rights reserved. It is reprinted with permission and may not be further reproduced or distributed without the prior written consent of Pearson Education, Inc.

� References

[ISO/IEC 99]�
ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01 Programming languages — C. International Organization for Standardization, 1999.�
�
[ISO/IEC 04]�
ISO/IEC. ISO/IEC WDTR 24731 Specification for Secure C Library Functions. International Organization for Standardization, 2004.�
�
Pearson Education, Inc. Copyright

This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006 by Pearson Education, Inc., published as a CERT® book in the SEI Series in Software Engineering. All rights reserved. It is reprinted with permission and may not be further reproduced or distributed without the prior written consent of Pearson Education, Inc.

� References

[ISO/IEC 99]�
ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01 Programming languages — C. International Organization for Standardization, 1999.�
�
[ISO/IEC 04]�
ISO/IEC. ISO/IEC WDTR 24731 Specification for Secure C Library Functions. International Organization for Standardization, 2004.�
�
Pearson Education, Inc. Copyright

This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006 by Pearson Education, Inc., published as a CERT® book in the SEI Series in Software Engineering. All rights reserved. It is reprinted with permission and may not be further reproduced or distributed without the prior written consent of Pearson Education, Inc.

� References

[Baratloo 00]�
Baratloo, A.; Singh, N.; & Tsai, T. “Transparent Run-Time Defense Against Stack Smashing Attacks,” 251-262. Proceedings of 2000 USENIX Annual Technical Conference. San Diego, CA, June 18-23, 2000. Berkeley, CA: USENIX Association, 2000.�
�
[Bulba 00]�
Bulba & Kil3r. Bypassing StackGuard and StackShiel (Prack, Vol�ume 0xa Issue 0x38 05.01.2000 0x05[0x10]). http://www.phrack.org/phrack/56/ p56-0x05 (2000).�
�
[Cowan 98]�
Cowan, C.; Pu, C.: Maier, D.; Hinton, H.; Walpole, J.; Bakke, P.; Beattie, S.; Grier, A.; Wagle, P.; & Zhang, Q. “Stackguard: Automatic adaptive detection and prevention of buffer-overflow attacks,” 63-77. Proceedings of the Seventh USENIX Security Symposium. San Antonio, TX, January 26-29, 1998. Berkeley, CA: USENIX Association, 1998.�
�
[Cowan 00]�
Cowan, Crispin; Wagle, Perry; Pu, Calton; Beattie, Steve; & Walpole, Jonathan. “Buffer Overflows: Attacks and Defenses for the Vulnerability of the Decade,” 119-129. Proceedings of the DARPA Information Survivability Conference and Exposition (DISCEX’00). Hilton Head Island, SC, January 25-27, 2000. Los Alamitos, CA: IEEE Computing Society, 2000.�
�
[de Raadt 03]�
Theo de Raadt, Advances in OpenBSD, presented at CanSecWest, Vancouver, Canada. April 2003 http://www.openbsd.org/papers/csw03/mgp00001.html�
�
[Etoh 04]�
Etoh, Hiroaki & Yoda, K. Protecting from stack-smashing attacks. http:// www.research.ibm.com/trl/projects/security/ssp/main.html (2004).�
�
[Jones 97]�
Jones, Richard W. M. & Kelley, Paul H. J. “Backwards-compatible bounds checking for arrays and pointers in C programs,” 13-26. Proceedings of the Third International Workshop on Automatic Debugging (AADEBUG’97). Linkoping, Sweden, May 26-27, 1997. Linkoping, Sweden: Linkopings Universitet, 1997.�
�
[Ruwase 04]�
Ruwase, Olatunji & Lam, M. S. “A Practical Dynamic Buffer Overflow Detector,” 159-169. Proceedings of the 11th Annual Network and Distributed System Security Symposium. San Diego, CA, February 5-6 2004. Reston, VA: Internet Society, 2004. http://suif.stanford.edu/papers/tunji04.pdf.�
�
[Seacord 05]�
Robert C. Seacord. Secure Coding in C and C++. Boston, MA: Addison-Wesley, 2005.�
�
[Wagle 03]�
Wagle, Perry & Cowan, Crispin. “StackGuard: Simple Stack Smash Protection for GCC,” 243-256. Proceedings of the GCC Developers Summit. Ottawa, Ontario, Canada, May 25-27, 2003.�
�
[Wilander 03]�
Wilander, J. & Kamkar, M. “A Comparison of Publicly Available Tools for Dynamic Buffer Overflow Prevention,” 149-162. Proceedings of the 10th Network and Distributed System Security Symposium. San Diego, California, February 6-7, 2003. Reston, VA: Internet Society, 2003. http://www.ida.liu.se/~johwi/ research_publications/paper_ndss2003_john_wilander.pdf.�
�
Pearson Education, Inc. Copyright

This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006 by Pearson Education, Inc., published as a CERT® book in the SEI Series

� References

[ISO/IEC 99]�
ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01 Programming languages — C. International Organization for Standardization, 1999.�
�
[Messier 03]�
Messier, Matt & Viega, John. Safe C String Library v1.0.3. http://www.zork.org/safestr (2005).�
�

� References

[ISO/IEC 99]�
ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01 Programming languages — C. International Organization for Standardization, 1999.�
�
[ISO/IEC 04]�
ISO/IEC. ISO/IEC WDTR 24731 Specification for Secure C Library Functions. International Organization for Standardization, 2004.�
�

� References

[ISO/IEC 99]�
ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01 Programming languages — C. International Organization for Standardization, 1999.�
�

� References

[ISO/IEC 99]�
ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01 Programming languages — C. International Organization for Standardization, 1999.�
�
[Miller 99]�
Miller, T. C. & de Raadt, T. "strlcpy and strlcat—Consistent, Safe String Copy and Concatenation," 175-178. Proceedings of the FREENIX Track, 1999 USENIX Annual Technical Conference. Monterey, CA, June 6-11, 1999. Berkeley, CA: USENIX Association, 1999. http://www.usenix.org/publications/library/proceedings/usenix99/ full_papers/millert/millert.pdf.�
�

� References

[ISO/IEC 99]�
ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01 Programming languages — C. International Organization for Standardization, 1999.�
�
[ISO/IEC 04]�
ISO/IEC. ISO/IEC WDTR 24731 Specification for Secure C Library Functions. International Organization for Standardization, 2004.�
�

� References

[ISO/IEC 99]�
ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01 Programming languages — C. International Organization for Standardization, 1999.�
�

� References

[ISO/IEC 99]�
ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01 Programming languages — C. International Organization for Standardization, 1999.�
�
[MSDN 05]�
Microsoft Corp. � HYPERLINK "http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/winui/windowsuserinterface/resources/strings/usingstrsafefunctions.asp" �Using the Strsafe.h Functions� (2005).�
�

� References

[ISO/IEC 99]�
ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01 Programming languages — C. International Organization for Standardization, 1999.�
�
[Antill 05]�
Antill, James. Vstr documentation -- overview. http://www.and.org/vstr (2005).�
�

� References

[ISO/IEC 99]�
ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01 Programming Languages — C. International Organization for Standardization, 1999.�
�

� References

[ISO/IEC 99]�
ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01 Programming languages — C. International Organization for Standardization, 1999.�
�
[Robertson 03]�
Robertson, William; Kruegel, Christopher; Mutz, Darren; & Valeur, Fredrik. ”Run-time Detection of Heap-based Overflows,” 51-60. Proceedings of the 17th Large Installation Systems Administration Conference. San Diego, CA, October 26–31, 2003. Berkeley, CA: USENIX Association, 2003.�
�

� References

[ISO/IEC 99]�
ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01 Programming languages — C. International Organization for Standardization, 1999.�
�

� References

[ISO/IEC 99]�
ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01 Programming languages — C. International Organization for Standardization, 1999.�
�
[Smashing 05]�
BSD Heap Smashing. http://thc.org/root/docs/exploit_writing/BSD-heap-smashing.txt (2005).�
�
[Kamp 98]�
Kamp, Poul-Henning. “Malloc(3) revisited,” 193-198. USENIX 1998 Annual Technical Conference: Invited Talks and Freenix Track. New Orleans, LA, June 15-19, 1998. Berkeley, CA: USENIX Association, 1998.�
�

� References

[ISO/IEC 99]�
ISO/IEC. ISO/IEC 9899 Second edition 1999-12-01 Programming Languages — C. International Organization for Standardization, 1999.�
�

Page 3 of 43

