USPTO Middleware Infrastructure Standards and Guidelines

[image: image1.wmf]

USPTO Middleware Standards and Guidelines

Version 0.4
April 14, 2010
Prepared for:

United States Patent and Trademark Office

Prepared by:

Andy Chang,

USPTO Middleware Team

3Introduction

3Limitations

3Development

3J2EE

4Documentum

6Packaging

6J2EE

6Documentum

7Build

7Deployment

7Configuration

8Administration

8Monitoring

Introduction
This section of this document introduces USPTO Middleware Infrastructure Standards and Guidelines of both J2EE and Documentum to various audiences like developers, application architects, administrators and management of USPTO.
Limitations

The USPTO Middleware Infrastructure Standards and Guidelines of both J2EE and Documentum are dependant on the products in the USPTO Middleware Infrastructure. As and when the products are upgraded to the next higher levels, this document will be updated to reflect the new standards and guidelines.

Also note that, tangentially, these standards and guidelines are derived from the industry best practices and then extended to suit the USPTO Middleware infrastructure.
Development
J2EE
· High level development guidelines
· Use Object Pools to manage the sharing of objects between multiple clients. By accessing an existing resource through a pool, the client avoids the creation, destruction and initialization costs. When the client is done with the object, it returns the object to the pool for other clients to use.
· Connection Pooling helps to both alleviate connection management overhead and decrease tasks for data access and is highly recommended in the USPTO Middleware Enterprise Architecture.

· Data Cache is very similar to a Hash table. It supports the adding and retrieval of information. A good cache must provide much more, like validation of data, expiration of stale data, and identification and management of infrequently accessed data. Developers often build caches into proxies, which can transparently satisfy requests with a cached value.
· Use proven design patterns

· Session Façade – Fine grained EJB application are highly susceptible to communications overhead. Session facades provide a service access layer that hides the complexity of underlying interactions, and consolidated many logical communications into one large physical communication.
· MVC – The Model-View-Controller patterns creates a decoupled data access, data presentation and user interaction layers. The benefits are a higher degree of maintainability because there are fewer interdependencies between components, a higher level of reusability as components have distinct boundaries, and easier configuration as your can implement new views without changing any underlying code.
· Value Objects are single representation of all data that an EJB call needs. By aggregating all of the needed data for a series of remote calls, you can execute a single remote call instead of many remote ones increasing overall application performance.
· Data Access Objects will abstract and encapsulate all access to the data source. The Data Access Object manages the connection with the data source to obtain and store data.
· Service Locator – Enterprise Application require the use of distributed components. It is often difficult and expensive task to obtain handles to components like an EJB’s home interface. Instead developers can efficiently manage and obtain them through a Service Locator that centralizes distributed object lookups by benefiting of having a single point of control and an effective attachment point for a cache.
· Expose all the possible variables of the application of both Web and EJB modules so that the Middleware administrators can scale the application if and when required accordingly.
· Use environment entries
· Use Resource references

· Integrate often – The reason for this best practice is clear. Integration worsens with time. The longer the amount of time between integration, the greater the integration effort. Through constant integration, the bugs can be identified and fixed immediately. This process encourages a culture of mutual respect and accountability. Conversely, delaying integration makes it easy to avoid difficult and important decisions until late in the development cycle. By doing builds more frequently, developers must build upon correct code, eliminating rippling impact or minor errors.
· Build test cases first and create testing using JUNIT or LoadRunner

· Optimize communication costs

· Use local calls as opposed to remote

· Aggregate data

· Batch SQL requests
· SQL – Identify all the critical SQLs by analyzing the cost and there by tuning them especially they are using any web enabled applications. Sometimes the Database has to be restructured to achieve more performance out of the SQLs.

· Logging: In a typical Enterprise architecture, Middleware administrators often make efforts to scale the application both horizontally and vertically in the infrastructure architecture to support the load and provide fail over capabilities to the business critical applications and hence the application architects should consider various factors including logging such that the applications should not fail in their functionality during these efforts.

Documentum

· Establish Pre-Production Test Platforms First
· Common Development Environment (DEV)
· System Integration Test Environment (SIT)

· Functional Qualification Test (FQT)

· Production (PROD)
· Application Development Best Practices
· Design Guidelines
· Expose a unified repository view of end users

· Facilitate repository maintenance and administration

· Share custom developments across applications

· Prefix object names with value chosen for the application
· System ACLs

· Alias Sets

· Audit Trail Custom Events

· Custom Audit Event Names

· Groups

· Methods

· Jobs

· Name of Custom Relations

· Application Owner Account (i.e. owner of)
· All configuration objects of the application (i.e. Lifecycles, Workflow templates, Alias)

· Documents and folders managed by the application which should not be freely altered by end users

· ACLs defined by the application which do not have to be defined as system ACLs because they are not intended to be applied by end users.
· Object Types

· It is strongly advised to not alter the attributes defined on standard Documentum types (i.e. although this does occur and can be done sensibly)

· Define the Object Hierarchy

· generic search requirements of the end users

· identification of generic business or internal attributes to be used across applications
· plan for impact on performance (i.e. get design approval for more than 4 depths)

· Object Type Naming Convention (e.g. dm_base_type)
· Agency Levels (e.g. xx_type and xx_attribute)

· Application levels (e.g. yy_type and yy_attribute)

· Attributes/Properties

· Systematically assign the a status attribute with the state name during a lifecycle state transition

· Add specific version labels when a document version reaches an important business state

· Unify the status and version label names to be used by the applications

· DocApp

· At least one dedicated DocApp should be created for the core model and for each application.

· Maintenance is eased if the workflow template of an application is packages in an additional DocApp. The preferred, not the default, DocApp settings should also be declared (i.e. override, new version)
· Managing Allowed Values of an Attribute

· Server Data Dictionary

· Contentless configuration objects created in the docbase

· Registered RDBMS tables

· Whichever option best suits the enterprise must be consistently used

· Workflow Template

· Avoid hard coding the routing logic in custom of the automatic tasks; Instead, expose as much as possible the workflow routing logic in the Workflow Manager interface

· Use options like dummy package, workflow and package alias

· WDK

· Within WDK/webtop, custom configuration/java class is kept within the custom folder of the WDK application. This keeps the customizations independent of the product and possible future upgrades.

Packaging
J2EE
· Use J2EE standard packaging specification

· EAR file – A J2EE application is packaged as an enterprise archive file.
· EJB modules – A collection of enterprise beans, packaged together in a .jar file. This file contains all of the java classes for enterprise beans including their home and remote interfaces, primary key class, supporting classes and EJB deployment descriptor.
· Web modules – A collection of servlets, jsp, applets, supporting classes etc, and a web deployment descriptor.
· Application modules – is a standard .jar file that contains both java classes and an application client deployment descriptor. The deployment descriptor is named application-client.xml
· Deployment descriptors are XML configuration files that contain all of the declarative data required to deploy the components in the module. The deployment descriptor for a J2EE module also contains assembly instructions that describe how the components are composed into an application.
Documentum
· Use standard Documentum tools inclusive of Documentum Application Builder/Documentum Application Installer.

· For DocApp pushes, use the Documentum Application Installer with a userid hat has Documentum Superuser privileges on the development/test host.

· Follow standard J2EE packaging guidelines to package customized servlets, JSPs and other custom application files.

· The packages application must be submitted to CM prior to deployment.
Build

· Build with ANT
a. ANT is the industry standard tool in the Java community and it is an extensible build tool that is written in java. It is an open source Jakarta project that runs on the multiple platforms and can contribute a great amount of flexibility to the build process. Based on XML, ANT has a number built in tasks that can be grouped together into targets that contribute to its versatility and power.

· Automate the build process

Deployment

· Use tools to deploy the applications.
· Do not copy any of the application related files instead deploy the files accordingly.
Configuration

· Use connection pools provided by the containers.

· Standard Naming Conventions
a. Clusters

i. ENT_<AIS>_Cluster

ii. <ENV>_AIS_Cluster (eg: TP_EFS_Cluster)

1. TP – TruePass

2. ENT – Enterprise

3. DM – Documentum

b. JVMs

i. <ENV>_<AIS>_<host-name-as-is>_Server<n>

c. Resources

i. <AIS>_<host-name-as-is>_<oracle_SID>_<port>_<DB_account>

d. Shared libraries

i. <AIS>_<name>_Lib

e. System Log locations

i. All the system logs are located at /WebSphere/Logs/<JVM NAME> on each node

f. Core locations

i. All the system core located at /WebSphere/Core on each node

g. Application configuration files

i. All the application related configuration files (OR otherwise called as properties files) will be located at /usr/WebSphere6/configurationfiles/<APP_NAME>

h. Application log locations
i. All the application logs will be located at /projects/<APP_NAME>

i. Log retention
i. All the system logs will be rotated based on the configuration set for that JVM.

ii. All the application logs should be rotated and cleanup by the individual AIS.
.

Administration

· Vertical scaling topology refers to setting up multiple application servers on one machine usually by creating cluster members for the benefits of increased processing power and efficiency, Load Balancing and Process failover. The USPTO Middleware team will work with the respective application architects and gathers the necessary information and architects the required middleware infrastructure for that application accordingly.
· Horizontal scaling topology refers to the members of application servers on multiple physical servers for increased throughput, workload management and also failover support without significant interruption to its client base.
· Upgrades – Middleware Team continuously makes orchestrated efforts to upgrade the Middleware infrastructure with primary objectives being stable infrastructure and no impact to the customers. Currently as per the USPTO policy Middleware team performs the upgrades to the Middleware infrastructure two times a year. During these efforts Middleware team coordinates with various other teams like USSD, ISSD, SPMD, DBAD and all AIS initiatives.
· Port numbers configured by the Middleware team for the JVMs in the Middleware infrastructure can change all the time. AIS’s should not count on depending on these port numbers instead they should always consider executing their application using the load balancing URL. Exceptions can be made on a case by case basis with appropriate approvals.
· Tier1 includes all the Load Balancers and HTTP Servers and these are managed by USSD. USPTO Middleware team works hand in hand with USSD to address any issues, upgrades related to this layer. However USPTO Middleware team advises the respective AIS’s to work the USSD directly for any application specific requirements.
· SSL is handled by Security/ITSPO team.

Monitoring
· USPTO Middleware Infrastructure is currently being monitored by SPMD (CapacityPlanning@uspto.gov). The Middleware team will work closely with SPMD to instrument the JVMs that help monitor them from the below aspects.
· Manage memory and plug leaks

· Garbage Collection – GC works by identifying objects that are reachable by the JVM. Most implementations work this way. Periodically the JVM invokes the GC. Some objects reference others, creating a directed graph. The GC then traverses the entire memory tree and determines if a path to each object exists from the root memory object. Since Java objects reference others, this graph of objects might be very deep. The GC marks objects as reachable or not, and then reclaims all of the unreachable objects.
· Roots of memory leaks: GC simply applies hard and fast rules to determine the objects that an application can no longer reach. The GC cannot determine your intent. Instead, it must follow the reach-ability rules strictly. If any reference to an object is left anywhere, then the object cannot be reclaimed.
· Sloppy clean up: If the connections are not cleaned up properly, the number of connections that are available can run out. In the same way, a memory leak can occur when a primary object allocates a leaked object and then more than one object references to leaked object.
· Short lifecycle meets long lifecycle: Whenever an object having a long lifecycle manages an object with a short lifecycle, it means that there is a potential for a memory leak.
· Shaky exception processing: Sometimes, exceptions can short circuit the cleanup code. For this reason, a “finally” block is mandatory in the clean up code.
· Leak collection happens when an object is kept in collection like a cache and was never removed.
· Caches happen when the application never flushes old or stale data.
· Publish-subscribe allow an object declaring an event to publish an interface and subscribers to receive notification when the event occurs. Each time an event is subscribed, the application needs to unsubscribe once complete.
· Singletons memory leak occurs with a long lifecycle that references an object with short life cycle.
· Session State Management
· It is simply recommended to use the various patterns to implement the Session State Management.

· Consider the networking architecture to make sure all the communications from a single client always returns to the same server or JVM (stickiness).

· Consider using EJBs, Stateless Session Beans to build a custom session management.
· Caching
Any caching solutions that are developed for the application will need to support distributed access as well. A simple hash table works fine for a cache for a standalone system, but it’s not sufficient for distributed processing. For this reason, it’s best to use design patterns and prepackaged software for most of the distributed caching needs. This is true at all clustered layers.
· Firewalls and communication planning
· When the application promotes from development to production environment for the first time, the involved teams need to deal with firewalls for the first time. All the involved teams need to have a full understanding of this information and also should have taken into consideration for the development efforts. For example the client should talk to the presentation server strictly through HTTP and HTTPS only and ports pertaining to protocols should be opened accordingly.
v0.4

Page 9 of 9

_1197977872.doc
[image: image1.png]

