	Best Practices for Developing J2EE Applications with WebSphere
	[image: image1.png] [image: image2.png]

	Date: 4/15/2004
	Version: 1.0

Introduction

To produce better-architected and designed J2EE applications that have good performance and meet customer needs, the Office of Life Cycle Management (LCM), SDMS and IBM Global Services have created a catalog of best practices for developing J2EE applications using WebSphere. These best practices are recommended for use in the design and development of AISs at USPTO.

Usage of Patterns

· Look for design patterns that solve the problem types you encounter

· Apply the IBM Patterns for e-Business to the architecture of your application

· Identify in comments or names the patterns that you use

· Use patterns to simplify, not complicate, your applications

· Familiarize yourself with well-known pattern catalogs

Layered Architecture

· Develop distinct layers within your application

· Prefer three-layer architectures, with possible sub-layers

· Rigorously enforce layer decoupling

· Prefer unidirectional dependencies between layers

· Judiciously allow the Presentation Layer to access the Data Layer directly

· Isolate business logic in reusable elements

· Avoid distributing your application across processes/tiers

Presentation Layer

· Use Model View Controller (MVC) to decouple the view (presentation), model (business logic) and controller (flow control) so that they are flexible and can easily adapt to change

· Use a presentation layer framework such as Apache Struts

· Use a Front Controller to centralize common logic

· Use View Helpers to clear up Java Server Pages (JSPs)

· Control complex site navigation using the State pattern

· Use the Intercepting Filter to add common request/response processing

· Add a Synchronizer Token to avoid duplicate submissions

· Use Memento to ensure previously visited forms are repopulated

· Use JavaScript to perform simple client-side validation and revalidate on the server side

· Ensure objects stored in the HttpSession are serializable

· Take care with session access within multi-framed JSPs

· Keep object graphs stored in HttpSession small

Using Struts

· Use Struts to simplify Web application development

· Use the Struts wizards in Application Developer

· Consider using well-known tag libraries

JSP Recommendations

· Use Java Server Pages for presentation logic only

· Use servlets for controller logic only

· Refactor common JSP code into custom JSP tags

· Implement validation at least in the server and optionally in the client

· Prefer JavaServer Pages Standard Tag Library (JSTL) tags to Struts tags and custom JSP tags

· Keep custom JSP tags simple

· Use TagExtraInfo when defining JSP tag attributes

· Cache intermediate results in custom JSP tags

· Implement clean-up logic in custom JSP tags

· Encapsulate display values in JavaBeans

· Use Struts Tiles to encapsulate page layout in templates

· Use Tiles Definitions

EJB Patterns for Business Layer

· Use the Session Façade pattern to improve performance and reduce coupling between Presentation and Business layers

· Use the Data Transfer Object (DTO) pattern to reduce the number of remote calls

· Prefer custom DTOs to domain DTOs

· Do not allow DTOs to cross multiple layer boundaries

· Encapsulate JNDI complexity in the Service Locator pattern

· Encapsulate EJB API complexity in the Business Delegate pattern

· Use the “Has Changed” pattern to detect stale data

EJB Patterns for Data Layer

· Use the Data Access Object (DAO) pattern to decouple the application from specific persistent APIs

· Use the Data Mapper pattern to decouple the domain model and the persistent storage model

· Use the Lazy Load pattern to defer the loading process until it is required

· Use the Version Number pattern to prevent lost updates

· Use the sequential ID Generation pattern to produce sequential integer identifiers

· Use the Unique ID generation pattern to produce globally unique identifiers

Architecture of the Business Layer
· Choose an architecture-level pattern for the Business Layer with care

· Choose Transaction Script for simple applications

· Choose Domain Model for applications with complex business logic

· Consider Table Module as a compromise between Transaction Script and Domain Model

· Use Enterprise JavaBeans only when you need the services they provide; otherwise consider using Plain Old Java Objects (POJOs)

EJB Exception Handling

· Prefer built-in exceptions to custom exceptions

· If the EJB client can recover from an exception, treat it as an Application Exception; otherwise treat it as a System Exception

· Wrap exceptions to preserve stack trace information and provide the client with context-relevant exceptions

· Override the getMessage() and printStackTrace() methods in exceptions that wrap other exceptions

· Remember to call setRollbackOnly() in the case of Application Exceptions

· Never use exceptions for normal program flow control

· Catch exceptions in the layer that has adequate context to deal with them

· Return the system to a consistent state before re-throwing an Application Exception

· EJBs should log all exceptions that they catch and do not re-throw

· EJBs should log all exceptions they throw unless they can guarantee that their clients will do so

· Use a logged flag to prevent duplicate logging

· Use a unique exception ID to facilitate cross-referencing

Persistence

· Consider an alternative to Entity EJB for persistence

· Aim for transparent persistence - keep persistence logic and awareness out of the domain model

· Consider JDO as a lightweight persistence mechanism for use instead of, or in conjunction with, Entity EJBs

Transaction Management

· Prefer container-managed transaction demarcation

· Prefer pessimistic locking for transactions with a high penalty for failure

· Prefer the more efficient optimistic locking when update collisions are expected to be infrequent

· Refactor Session EJB code into non-EJB classes

· Avoid deadlocks by always accessing resources in the same order

· Avoid long-lived transactions

· Use the least restrictive isolation level that will not result in a loss of data integrity

· Prefer Read Committed for transactions that are mostly read only, or new data

· Prefer Repeatable Read or Serializable for update transactions that perform multiple operations

· Avoid using both pessimistic and optimistic policies in the same transaction

· Consider using Local Transactions if 2PC not required

· Use J2EE commit options for entity beans

· For relatively static data use lifetime-in-cache settings to minimize accessed to the persistent store

Integration with Other Systems

JCA

· Use JCA for enterprise resource interaction

· Choose a managed environment

· Prefer CCI functions to resource adapter specific calls

· If you need to invoke several resource adapters, encapsulate the manipulation of ConnectionSpec and InteractionSpec classes in a separate class/method

· If an application accesses a single resource manager, use a local transaction instead of an XA transaction

JMS

· Use JMS for asynchronous communication

· Implement JMS clients in the Enterprise JavaBeans

· Use message-driven beans to delegate the processing of incoming message to other enterprise beans

· If you need high availability and high performance, consider using WebSphere MQ instead of the JMS provided in WebSphere Application Server

· Use JMS message timeouts

· Use JMS message selectors

· Consider making messages non-persistent to increase performance

· Use appropriate timeout and retry settings with EJB message producers to avoid blocking problems

· Consider using XML-based messages

· Explicitly close JMS resources that are no longer needed

· Catch JMS exceptions to report nested exceptions

· Never throw application exceptions in the onMessage method

· Use ExceptionListeners to receive notification of problems

Web Services

· Consider providing application services as web services

· Prefer private UDDI registries to public registries

· Design course-grained Web Services

· Prefer standard SOAP structures

· Use SOAP implementations that allow for pluggable XML parsers

· Embed a version number in requests in the SOAP header

· Avoid chaining services

· Use the JNDI namespace to look up a connection factory instance

Logging and Tracing

· Differentiate between logging and tracing

· Trace only if there is a problem

· Create rotating logs to conserve storage space

· Include logs in backup procedure

· Enable logging to be filtered and/or turned off without changing code

· Log4j is the most popular logging API for J2EE at this moment

· Prefer XML-based configuration of Log4j
· For distributed systems, use Log4j and JMS to provide a unified log

Unit Tests

· Write automated tests and run them during development

· Write tests before you write the code that satisfies them

· Test both expected input and invalid input

· Test the public interface of most classes

· Write tests to expose known bugs before fixing them

· Test only those things that might fail

· Use a testing framework, for example, JUnit

· Use the JUnit support within application Developer

· Perform end-to-end testing

· Consider using Cactus to test servlets and EJBs

· Consider testing Web interface with HttpUnit

· Use Mock Objects to isolate test

· Ensure that all unit tests succeed before integrating

· Concentrate testing effort on layer boundaries

· Integrate developer changes as often as possible

Building and Deploying

Building and Deploying

· Store all source code – current and previous versions – in a single place

· Let all developers operate the build and test process

· Establish Java JAR dependencies in the manifest

· Study the WebSphere classloader behavior

· Take care if using PARENT_LAST classloader mode

· Deploy utility code as locally as possible: in the module, in the root of an application, or in WAS_ROOT/lib

· Prefer deploying applications as self-contained EARs

Ant

· Use Ant to automate the build and test process

· Use the echo task liberally in development

· Prefer using WebSphere-specific Ant tasks over wsadmin scripting

References

· IBM Global Services, WebSphere Best Practices Mentored Workshop: Developing e-Business Solutions, 2003.

· Erich Gamma, et al, Design Patterns, Addison-Wesley, 1994.
· Deepak Alur, et al, Core J2EE Patterns: Best Practices and Design Strategies, Sun Microsystems Press, Second Edition, Prentice Hall, 2003.
· Marinescu, Floyd, EJB Design Patterns- Advanced Patterns, processes, and Idioms, John Wiley & Sons, Inc., 2002.
· IBM, WebSphere Version 5 Application Development Handbook, 2003.

