[image: image1.png]

Java Coding Standards - Draft.doc

	
[image: image83.jpg]

	

	

	USPTO/OCIO

	Java Coding Standards

	

	DRAFT VERSION

December 16, 2009
Record of Changes

	Version
	Date
	Sections Affected
	Type of Change

	1.0
	12/16/2009
	N/A
	Initial draft release.

	
	
	
	

	
	
	
	

71
Introduction

71.1
Purpose and Scope

71.1.1
Document Conventions

71.1.2
Sample Code

71.2
Ownership and Maintenance

71.3
Points of Contact

71.4
References

82
Standards and Guidelines

82.1
Naming Conventions

82.1.1
Overview

112.1.2
Guidelines and Recommendations

112.1.2.1
Best Practices

112.1.2.1.1
Abbreviate Intelligently

122.1.2.1.2
Refer to Design Pattern within Class Name

122.1.2.1.3
Mention Interface within Implementation Class Name

122.1.2.1.4
Name In Accordance with Business Terminology

122.1.2.1.5
Write Embedded Acronyms in Upper CamelCase

132.1.2.2
Anti-Patterns

132.1.2.2.1
The “Impl” Class

132.1.2.2.2
The Dedicated “.exceptions” Package

132.1.2.2.3
Names Containing Definite and Indefinite Articles

132.1.3
References

132.2
Formatting & Documentation Conventions

132.2.1
Overview

142.2.1.1.1
File Organization

152.2.1.1.2
Source Formatting

232.2.2
Guidelines and Recommendations

232.2.2.1
Best Practices

232.2.2.1.1
Use a Code Formatter for Consistency

232.2.2.1.2
Write Explanatory Comments

232.2.2.1.3
Provide JavaDocs

232.2.2.1.4
Use “Standard” Comment Keywords

242.2.2.2
Anti-Patterns

242.2.2.2.1
Lengthy Class Files

242.2.2.2.2
Lengthy Methods

242.2.2.2.3
Explicitly Coding the Implicit

252.2.2.2.4
Overly Commented Code

252.2.2.2.5
Stating the Obvious in JavaDocs

252.2.2.2.6
Using Fully Qualified Class Names

262.2.3
References

262.3
Memory Management

262.3.1
Overview

272.3.2
Guidelines and Recommendations

272.3.2.1
Best Practices

272.3.2.1.1
Understand Your Application’s Lifecycle

272.3.2.1.2
Understand Objects’ Lifecycles

282.3.2.1.3
Expire Data within Caches

292.3.2.1.4
Clean up Listener Subscriptions

292.3.2.1.5
Optimize Afterwards

302.3.2.1.6
Tune the JVM

302.3.2.2
Anti-Patterns

302.3.2.2.1
Storing Arbitrarily Large Data in Byte Arrays

312.3.2.2.2
Singleton Collections

312.3.2.2.3
Registering Yourself as a Listener at Initialization

322.3.2.2.4
Using the finalize() Method for Non-Memory Purposes

332.3.2.3
Tools

332.3.2.3.1
jhat

332.3.2.3.2
jconsole

342.3.3
References

342.4
Security Standards

342.4.1
Overview

352.4.2
Guidelines and Recommendations

352.4.2.1
Best Practices

352.4.2.1.1
Use Methods to Encapsulate Access to Instance Variables

352.4.2.1.2
Prevent Constructors from Calling Methods that Can be Overriden

352.4.2.1.3
Mark Instance Variables Storing Sensitive Data as transient

352.4.2.1.4
Declare Methods Performing Security Checks as private or final

352.4.2.2
Anti-Patterns

352.4.2.2.1
Hard-coded Sensitive Data

352.4.2.2.2
Manually Concatenated SQL Statements

362.4.3
References

372.5
Threading and Concurrency

372.5.1
Overview

372.5.1.1
Terminology

372.5.1.2
Java Support for Threading and Concurrency

372.5.1.2.1
Java Platform Support

392.5.1.2.2
Concurrency API

402.5.2
Guidelines and Recommendations

402.5.2.1
Best Practices

402.5.2.1.1
Understand Your Execution Environment

402.5.2.1.2
Identify Shared Resources

402.5.2.1.3
Read JavaDocs for Thread Safety Notes

412.5.2.1.4
Document Synchronization Details in JavaDocs

412.5.2.1.5
Make Objects Immutable When Possible

422.5.2.1.6
Synchronize Only When Necessary

432.5.2.1.7
Synchronize on Appropriate Objects

452.5.2.1.8
Prefer the java.util.concurrent API (Java 5.0+)

452.5.2.1.9
Lazily Initialize Singletons with the Instance Holder Pattern

462.5.2.1.10
Use Concurrency to Improve User Experience

462.5.2.2
Anti-Patterns

462.5.2.2.1
Unsynchronized Reads

472.5.2.2.2
Inappropriate Locking Objects

482.5.2.2.3
Direct Invocation of Thread.run()

482.5.2.2.4
Single-checked locking

492.5.2.2.5
Double-checked locking

502.5.2.2.6
Leaky Constructors

522.5.2.2.7
Unnecessary Synchronization

522.5.2.2.8
Static Instances of DateFormat or DecimalFormat

532.5.2.2.9
Thread-unsafe DOM Usage

532.5.2.2.10
The Not-so-atomic ++ Operator

532.5.2.2.11
The Not-so-atomic 64-bit Primitives

542.5.2.3
Tools

542.5.2.3.1
Multi-core Processors

542.5.2.3.2
Multi-threaded Capable Unit Testing

542.5.3
References

552.6
Logging

552.6.1
Overview

552.6.1.1
Error Handling in Java

552.6.1.2
Logging in Java

552.6.2
Guidelines and Recommendations

552.6.2.1
Best Practices

552.6.2.1.1
Use Logging

552.6.2.1.2
Use Guarded Logging

562.6.2.1.3
Log at the Appropriate Level

562.6.2.1.4
Separate Technical and Business Logging

572.6.2.1.5
Declare a Logger per Class

572.6.2.2
Anti-Patterns

572.6.2.2.1
Log and Re-throw

572.6.2.2.2
Back-to-Back Logging Statements

582.6.2.2.3
Logging to System.out or System.err

582.6.2.2.4
Logging User Errors above INFO Level

582.6.2.3
Tools

582.6.3
References

592.7
Error Handling

592.7.1
Overview

592.7.1.1.1
Checked

592.7.1.1.2
Unchecked

602.7.2
Guidelines and Recommendations

602.7.2.1
Best Practices

602.7.2.1.1
Define Custom Exception Types for APIs

602.7.2.1.2
Perform Cleanup Actions within finally Blocks

612.7.2.1.3
Throw UnsupportedOperationException from Unimplemented Methods

612.7.2.2
Anti-Patterns

612.7.2.2.1
Throwing java.lang.Exception

612.7.2.2.2
Throwing the Kitchen Sink

622.7.2.2.3
Catching java.lang.Error or java.lang.Throwable

622.7.2.2.4
Destructive Wrapping

622.7.2.2.5
Using a Null Return Value to Signal Exceptional Behavior

632.7.2.2.6
Using Return Values to Signal Exception Behavior

632.7.2.2.7
Swallowing Exceptions

632.7.2.2.8
Throwing Exceptions or Returning Within finally

642.7.2.2.9
Relying on getCause()

652.7.2.2.10
Using Exceptions for Control Flow

672.7.3
References

672.8
General Programming Practices

672.8.1
Overview

672.8.2
Guidelines and Recommendations

672.8.2.1
Best Practices

672.8.2.1.1
Access Static Variables and Methods without Object References

672.8.2.1.2
Choose the Appropriate Collection Type

682.8.2.1.3
Avoid Magic Numbers

682.8.2.1.4
Externalize File Paths, SQL, and Other Platform-Dependent Data

692.8.2.1.5
Assign Variables Safely

692.8.2.1.6
Build Strings Efficiently

712.8.2.1.7
Declare Methods final Only if Necessary

712.8.2.1.8
Put Potentially Null References on Expressions’ Right Hand Side

712.8.2.1.9
Minimize Usage of Java Generics

722.8.2.1.10
Provide Consistent hashCode() and equals() Implementations

722.8.2.1.11
Prefer “empty” Return Values over Null

732.8.2.1.12
Prefer Interfaces to Concrete Types

732.8.2.1.13
Use Inline Array Initialization Syntax

732.8.2.1.14
Use Parenthesis to Improve Readability

742.8.2.1.15
Specify Charset Encoding in byte to char Conversions

742.8.2.1.16
Properly Close Resources When No Longer Needed

752.8.2.2
Anti-Patterns

752.8.2.2.1
If True, Return True, Else Return False

762.8.2.2.2
The Constant Interface

762.8.2.2.3
Mutable “Constants”

772.8.2.2.4
Static Initializer Blocks

782.8.2.2.5
Deeply Nested Blocks

802.8.2.2.6
Single Point of Return

802.8.3
References

802.9
Unit and Integration Testing

802.9.1
Overview

802.9.1.1
Unit Testing

812.9.1.2
Integration Testing

812.9.1.2.1
Top-Down Approach

812.9.1.2.2
Bottom-up Approach

812.9.1.2.3
Umbrella Approach

822.9.2
Guidelines and Recommendations

822.9.2.1
Best Practices

822.9.2.1.1
Test Behavior Not Methods

822.9.2.1.2
Test the Method Contract

822.9.2.1.3
Test Negative Behavior (Error Generation and Handling), Not Just Positive Behavior

832.9.2.1.4
Test the Edge Conditions/Cases

832.9.2.1.5
Provide Descriptive Test Method Names

832.9.2.1.6
Mock Dependencies

832.9.2.1.7
Mock Dependencies via Class Interfaces

842.9.2.1.8
Make Tests Repeatable

842.9.2.1.9
Allow Testability to Influence Class Design

842.9.2.1.10
Use a Code Coverage Tool

852.9.2.2
Anti-Patterns

852.9.2.2.1
Catching RuntimeExceptions in Test Methods

852.9.2.2.2
Presuming Test Cases Will Execute in a Specific Order

852.9.2.2.3
Testing Getters and Setters

852.9.2.2.4
Relying on Manual Visual Inspection of Test Output

852.9.2.2.5
Writing Unit Tests with No Test Assertions

852.9.2.3
Tools

862.9.3
References

1 Introduction

1.1 Purpose and Scope
This document describes Java Coding Standards enforced by the United States Patent and Trademark Office. These standards are not comprehensive, and are subject to change over time. Nevertheless, these standards provide a strong starting point for developing readable, secure code.
1.1.1 Document Conventions

Java keywords, package and class names, and other inline code fragments appear in a fixed-width font to aid in readability.
1.1.2 Sample Code

Sample code appears within text boxes using a fixed-width font. Code is syntax highlighted for easier readability. Sample code that demonstrates failure to adhere to a particular standard has a red border around its text box to indicate that the code sample is non-conformant. Such code is accompanied by text describing the non-conformance.
Some sample code may take liberties with prescribed naming and/or formatting conventions, especially in regards to blank lines and line length, in order to display appropriately within this document.
1.2 Ownership and Maintenance
TODO
1.3 Points of Contact
TODO
1.4 References
These standards were primarily based on the following sources:
· Sun Java Code Conventions for the Java Programming Language http://java.sun.com/docs/codeconv/
· The CERT Sun Microsystems Secure Coding Standard for Java https://www.securecoding.cert.org/confluence/display/java/The+CERT+Sun+Microsystems+Secure+Coding+Standard+for+Java
2 Standards and Guidelines
Java coding standards and guidelines play a role in the USPTO effort to ensure code quality. Quality code has these fundamental characteristics:

1. Readable/Concise – code is readily understood by other developers by virtue of its clarity and adherence to expected formatting and naming conventions. The logic is largely self-documenting with sporadic comments used to explain less obvious segments of code. Classes, methods, and non-local variables have explanatory JavaDocs. Each class and method has an ideally singular purpose.
2. Correct/Consistent – code works as intended in all reasonable circumstances, including multi-threaded execution environments and preferably under greater-than-normal application demands (e.g. user loads, network delays, etc.).
3. Secure – code is not susceptible to problems that would compromise sensitive data or result in prolonged application failure.
The remaining sections of this document describe specific standards that relate to these fundamental areas.
2.1 Naming Conventions
2.1.1 Overview
Consistently following naming standards is essential for readability. The USPTO’s naming conventions follow chapter 9 of Sun Microsystems’ Java Code Conventions, last updated April 20, 1999. Because the Java language has evolved since then, these conventions include addendums to address new Java constructs such as Annotations and Generics.
The following table describes the naming and syntax rules for namable elements within the Java language.

	Identifier Type
	Rules of Naming
	Examples

	Packages
	USPTO packages must begin with gov.uspto.

The rest of the package name defines a unique namespace pertinent to the USPTO. This is typically the project name or acronym followed by names identifying project components and sub-components.

Package names should be written in lowercase ASCII letters and digits (a-z, 0-9).
	Common code for PALM Expo: gov.uspto.palm.expo.common
Struts actions for QRS’ web component: gov.uspto.qrs.web.action

	Classes
	Class names are singular nouns indicating what the class is representing and possibly including defining technological, business, or design characteristics.

Abstract classes providing a partial, base implementation of an interface conventionally begin with the word “Abstract”

Class names should be written in Upper CamelCase: the first letter of each word, abbreviation, or acronym within the name is capitalized and its remaining letters are all lowercase.

Class names should be at least 3 characters and no more than 40 characters in length and should consist only of ASCII letters and digits (A-Z, a-z, and 0-9).
	AbstractDownloadServlet

CustomerNameComparator

XmlDocument

	Interfaces
	Interfaces use the same naming and syntax rules as Classes except that there should be no implementation-specific details mentioned in the interface name.

Interfaces that describe a single operation should be of the form operationable.

Do not prefix interfaces with a capital I.
	CustomerNameService

Cloneable

Runnable

	Annotations
	Annotations share the same naming and syntax rules as Classes. Unlike Classes, however, Annotation names can be nouns, verbs, or adjectives.
	PrimaryKey

SupressWarnings

	Exceptions
	Exceptions use the same syntax and naming rules as Classes. The name should succinctly define the problem or condition the Exception signals.

The name must end with Exception.
	DataAccessException

InvalidUserInputException

	Method
	Method names should be verbs describing the action that the method performs.

Accessor and mutator methods (i.e. getters and setters) for a property follow JavaBean naming conventions: the first letter of the property name is capitalized and preceded with “get” for the accessor and “set” for the mutator. If the property has a primitive boolean type, the accessor prefix is “is” instead of “get.”

Method names are written in mixed case (also called Lower camelCase), which is identical to Upper CamelCase except that the very first letter of the entire name is in lowercase. Only use ASCII letters and digits (A-Z, a-z, and 0-9) for method names. Method names should be at least 3 characters and no more than 40 characters in length.
	copy

copyLarge

getTitle, setTitle are the accessor and mutator method names for the property title.

	Variables
	A variable should have short but meaningful name that describes its use. The amount of descriptiveness the name has depends on the scope of the variable. The greater the scope, the more descriptive the name should be.

One character names are suitable for temporary variables used to index loops or represent the current state of an iteration. Conventional index variable names are i, j, and k.

Like method names, variable names are mixed case (lower camelCase), should only use ASCII letters and digits (A-Z, a-z, and 0-9). Variable names should not exceed 40 characters in length.
	width

j

backgroundImgSrc

	Constants & Enumeration Values
	Constants and Enumeration Values are variables with an essentially global scope, and thus should have names that are more descriptive than brief.

Constants and Enumeration Values must be named entirely in uppercase ASCII letters and digits (A-Z and 0-9) with internal words, acronyms, and abbreviations separated by an underscore (_). Constants and Enumeration Values should not exceed 80 characters in length.
	DEFAULT_SORT_DIRECTION

MAX_WIDTH

DATASOURCE_JNDI_NAME

	Generic Type Parameters
	A generic type parameter name consists of a single uppercase ASCII character (A-Z). The letter typically reflects the bounds type for the parameter, the business purpose of the parameter, or is a generic, index-like character (commonly T).
	Letter reflects parameter type: <C extends Collection>, <F extends Foo>
Letter reflects business purpose: E for Element, K for Key, N for Number, V for Value

T

S

2.1.2 Guidelines and Recommendations
2.1.2.1 Best Practices

2.1.2.1.1 Abbreviate Intelligently

Abbreviations are useful for keeping names brief. The table below lists some common words encountered while coding and provides some common abbreviations for them.

	Term
	Abbreviation

	Amount
	am, amt

	Category
	ct, cat

	Code
	cd

	Date
	dt

	Dimension
	di, dim

	Identifier
	id

	Indicator
	in, ind

	Iterator
	it

	Name
	nm

	Node
	nd

	Number
	no, nbr

	Object
	obj

	Percent
	pt, pct

	Quantity
	qt

	Text
	tx, txt

	Time
	tm

	Timestamp
	ts

2.1.2.1.2 Refer to Design Pattern within Class Name

Classes adopting a common design pattern should attempt to mention that pattern within the class name when it benefits readability. For example, a class that abstracts the details of creating complex OfficeAction objects should be named OfficeActionBuilder. A class that abstracts the details of accessing Patent Application-related data should be named ApplicationDAO.
Patterns names do not need mentioning for patterns with scopes larger than that of a single class (Inversion of Control, MVC) and the singleton pattern, which is typically employed by classes adhering to some other pattern (e.g. Factory, Façade).

2.1.2.1.3 Mention Interface within Implementation Class Name

Classes that implement a business interface should attempt to mention the interface name within its own name. For example, implementations of the javax.xml.transform.Source interface include classes named DOMSource, JAXBSource, SAXSource, StAXSource, and StreamSource. Similarly, ArrayList and LinkedList are implementations of the java.util.List interface. Classes that implement interfaces describing a single characteristic (Serializable, Cloneable, Comparable, and Runnable, for example) do not need to mention the interface name.

2.1.2.1.4 Name In Accordance with Business Terminology

The names you give classes and packages should reflect the business of your customer. Do not create generic terms for business concepts when perfectly good terms already exist in the domain. For example, if the business describes a piece of correspondence between two parties as a “contact,” then the Java classes and methods should adopt that nomenclature, e.g. class ContactDAO, getContactsByAddressee(), etc.

2.1.2.1.5 Write Embedded Acronyms in Upper CamelCase
Acronyms such as XML and SQL are commonly used within class names in place of their full name for brevity’s sake. When acronyms appear in the middle of class names, write the acronym in camel case for readability. If it appears at the very beginning or end of the class name, either camel case or all uppercase is acceptable.
Examples:
· AbstractHtmlDocumentParser

· SimpleHttpClient

· JdbcConnectionPool
· IPAddressResolver

· CustomerAddressDAO

2.1.2.2 Anti-Patterns

2.1.2.2.1 The “Impl” Class

When the name of a public interface implementation ends is the same as the interface name with “Impl” appended, then the either the interface is dictating unnecessary implementation details or the developer isn’t being creative enough. Try to find a characteristic of the implementation that can be incorporated into the Class name.
2.1.2.2.2 The Dedicated “.exceptions” Package
Custom Exception types should reside in the package pertaining to their business use, not in a separate package named the same as a business package with “.exceptions” appended.
2.1.2.2.3 Names Containing Definite and Indefinite Articles

Do not use “a”, “an”, or “the” within names; they add length to the name but do not add to its descriptiveness. Consider the examples in the following table:
	Incorrect
	Correct

	openTheConnection
	openConnection

	theFirstPageIndex
	firstPageIndex

	formatADate
	formatDate

	obtainAnAuthenticationToken
	obtainAuthToken

2.1.3 References

· Sun Java Code Conventions: Chapter 9 – Naming Conventions [April 20, 1999]

http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html
· Java naming conventions, Scott W. Ambler [July 13, 2000] http://www.ibm.com/developerworks/java/library/ws-tip-namingconv.html
2.2 Formatting & Documentation Conventions
2.2.1 Overview
Formatting and documentation conventions describe how code and comments are presented within source files. Properly formatted and commented code enhances its readability. As with naming conventions, formatting and documentation conventions mostly follow Sun’s Java Code Conventions.
2.2.1.1.1 File Organization

Each Java source file should contain exactly one top-level class or interface. The file name must match the name of the non-private, top-level class or interface it defines and have a .java file extension (e.g. the source file DataReader.java defines the top-level class DataReader).

A Java source file should be organized as follows:

· Introductory comments (optional)

· Package and Import statements (mandatory)

· Top-level Class or Interface declarations (mandatory)

2.2.1.1.1.1 Introductory Comments

Introductory comments are C-style comments typically containing metadata about the source code such as the file creation date, copyright, and license information. These comments are optional; if present, they should be formatted with the opening (/*) and closing (*/) comment delimiters on separate lines, with asterisks at the beginning of each line between the delimiters.

[image: image2]
2.2.1.1.1.2 Package and Import Statements

The package statement should be the first non-comment line of a Java source file. The package statement should be followed by a blank line, followed by import statements. There must be only one import statement per line. Import statements should be grouped by the package’s top-level domain name (com, org, gov, net, et. al.). Use a blank line to separate groups of import statements.

[image: image3]
2.2.1.1.1.3 Class or Interface Declarations
The table below shows the parts of a Class or Interface declaration, ordered according to how they should appear with the Java source file.
	Part of Class/Interface Declaration
	Notes

	class or interface statement
	

	Constants and static variables
	There is no prescribed ordering for constants and static variables.

	Static initialization blocks
	

	Instance variables
	There is no prescribed ordering for variables.

	Instance initialization blocks
	

	Constructors
	There is no prescribed ordering for constructors.

	Methods
	There is no prescribed ordering for methods. The best ordering is the one that makes the class, as a whole, more understandable. Typically, the methods hashCode, equals, and toString appear at the bottom if they’re defined.

	Inner or Nested Classes
	Inner and Nested classes may instead appear after the class or interface statement if it enhances the readability of the class.

2.2.1.1.2 Source Formatting
This section describes the USPTO rules for formatting Java source code. These rules are intended to be consistent with the default formatting rules provided in modern IDEs such as Eclipse 3.5, RAD 7.5, and NetBeans 6.8.
2.2.1.1.2.1 Indentation

Use two to eight spaces for indentation; a four space indentation is preferred. Sun’s indentation conventions permit a mixing of spaces and tabs. This is a matter of personal taste, but make sure that all the developers in the project are adhering to the same policy. This will prevent diff reports from being cluttered with whitespace-related differences. The USPTO recommends using all spaces.
2.2.1.1.2.2 Line Wrapping

Attempt to keep line length at or under 80 characters. If a line exceeds that limit, then it should be wrapped over two or more lines in order to keep each line at or under 80 characters. Ultimately, though, readability is the goal, so if an expression exceeding 80 characters on a single line is more readable than it would be wrapped onto two lines, opt for the single line approach. When wrapping expressions on multiple lines, follow these basic rules:

· Wrap after a comma.
· Wrap before an operator.

· Double indent the wrapped lines of an expression.

[image: image4]
The source code example above uses a maximum line length of 50 (indicated by the vertical gray line) for the purpose of demonstrating line wrapping techniques. Actual source code should use the prescribed maximum line length of 80.

2.2.1.1.2.3 Declarations & Statements
The example source fragments below show acceptable formatting—usage of whitespace, indentation, blank lines, and new lines—for declarations and statements.
2.2.1.1.2.3.1 Class, Interface, and Annotation Declarations

[image: image5]
2.2.1.1.2.3.2 Instance and Local Variable Declarations

[image: image6]
2.2.1.1.2.3.3 Constructors

[image: image7]
2.2.1.1.2.3.4 Method Declarations

[image: image8]
2.2.1.1.2.3.5 Method Invocations

[image: image9]
2.2.1.1.2.3.6 Annotations

[image: image10]
2.2.1.1.2.3.7 Enums

[image: image11]
2.2.1.1.2.3.8 Control Statements

[image: image12]
2.2.1.1.2.3.9 Expressions

[image: image13]
2.2.1.1.2.3.10 Arrays

[image: image14]
2.2.1.1.2.3.11 Parameterized Types

[image: image15]
2.2.1.1.2.4 Blank Lines
Blank lines enhance readability by dividing code into segments that are more easily read than a continuous portion. Blank lines are to be used in the following circumstances:

· After the package declaration

· Between groups of import statements

· Between the parts of a class or interface declaration (e.g. between the last instance variable and the first constructor).
· Between constructors

· Between methods

· Before the first annotation of an instance or local variable

· Between logical sections inside a method to improve its readability

Do not put a blank line between a JavaDoc comment and its associated method or class/interface declaration.

2.2.1.1.2.5 New Lines

New lines should be used in the following locations:
· After the open brace following a class/interface declaration

· After the open brace following a method declaration

· After a semi-colon, unless:

· The semi-colon terminates an expression within the traditional for loop construct

· The semi-colon is followed by a end-of-line or trailing comment

· After a block comment closing delimiter: */
· After a non-parameter annotation
[image: image16]
2.2.1.1.2.6 Whitespace

A single blank space should be present in the following locations:
· Between an if, for, while, or switch statement and its following open parenthesis: if (expr), for (expr), while (expr), switch (expr)
· After each comma in lists of arguments, Exceptions, interfaces, Enumerations, and Parameterized types: arg1, arg2, arg3
· Between a binary operator and its operands, excluding the “dot” operator: operand OP operand
· Between the ternary operator and its operands: operand ? operand : operand
· After the first and second expressions within a traditional for loop construct: for (expr1; expr2; expr3)
· Before and after the colon of the simplified for loop construct introduced in Java 5: for (obj : iterable)

· After the ellipses of a varargs argument: Type... arg
· Before an open brace, except for those which are the first non-whitespace character on a line
· After a closing brace, unless the closing brace is on a line by itself or on a line containing only itself and a semi-colon
· After the closing parenthesis of a type cast: (Type) object
· After the open brace and before the closing brace of an inline array: { 1, 2, 3 }
Whitespace should not be present in the following locations (provided examples demonstrate correct use of whitespace):

· Before a comma

· Before a semi-colon

· Before or after the dot operator, .: var.toString()

· Before the opening parenthesis of an annotation, constructor, or method parameter list: @Annotation(), method(), Constructor()
· Before the open square bracket of an array declaration or allocation: Type[] eg;
· After the open square bracket or before the close square bracket of an array declaration or allocation: new Type[4];
· Before the open angle bracket in a generic/parameterized type name: List<E>
· After the open angle bracket or before the close angle bracket in a generic/parameterized type name: Map<String, List<String>>

· Between the ellipses and the type name of a varargs argument: Type... arg
· After the open parenthesis of an parenthesized expression
· Before the close parenthesis of an parenthesized expression

· Between a prefix or postfix unary operator and its sole operand: operand++ operand-- ++operand –operand +operand –operand ~operand !operand
2.2.2 Guidelines and Recommendations
2.2.2.1 Best Practices

2.2.2.1.1 Use a Code Formatter for Consistency

Modern IDEs come equipped with automatic code formatters. Run the formatter prior to checking in code to ensure consistent formatting. If you feel inclined to manually format in order to make a certain portion of code more readable or aesthetically pleasing, resist the inclination. The next developer who updates the code will likely auto-format it, destroying your manual formatting.
2.2.2.1.2 Write Explanatory Comments
Comments should provide explanatory information that aids in understanding, especially for non-obvious code. A good comment might explain the business requirement a tricky piece of code implements (e.g. “Results are ordered chronologically, with the user-assigned results displayed first.”) or highlight a technological problem code is working around (“reduce the HTTP response buffer size to avoid OutOfMemoryErrors for large file downloads.”) Do not write comments that echo what the code does (e.g. “Trim the whitespace from the String”).
2.2.2.1.3 Provide JavaDocs

JavaDoc comments (block comments beginning with /**) must generally be provided for the following:

· Class declarations (at a minimum include description of class and authorship information)
· All public methods except for getters and setters
· Non-private Instance and Class Variables (this includes Constants)

If so inclined, provide a package-info.java within packages to document their purpose and use; this file is not mandatory.
2.2.2.1.4 Use “Standard” Comment Keywords

There are a handful of special keywords that can be put into comments for bringing attention to code concerns or potential deficiencies. Modern development tools are capable of generating useful reports from such comments. Be wary of littering code with such comments, however; too many of them can be an indication of poor code.
· TODO – indicates matters to possibly implement in the future

· FIXME – indicates potential problems or inefficiencies

· HACK – indicates that the code works but falls short of the developer’s personal standards

· XXX – a general, catch-all indicator
2.2.2.2 Anti-Patterns

2.2.2.2.1 Lengthy Class Files

A class files exceeding 1200 lines of code, excluding blank lines and comments, commonly indicates an insufficiently modularized design. Identify the various concerns the class is addressing and attempt to move them into separate classes. For example, if your DAO manages a database connection pool, queries the database, and converts java.sql.ResultSets to Data Transfer Objects, consider moving the connection pooling and ResultSet conversion concerns into other classes and let the DAO focus on querying the database.

2.2.2.2.2 Lengthy Methods

As with lengthy class files, lengthy methods (those exceeding 120 lines of code excluding blank lines and comments) are commonly indicative of an insufficiently modularized design. Such methods should be refactored into multiple, smaller methods.

2.2.2.2.3 Explicitly Coding the Implicit

For convenience, Java provides following implicit code:

· Importing the entire java.lang package

· Extending java.lang.Object when no parent class is specified

· A default, public, no-argument constructor when no other constructors are specified
· Referencing this when invoking instance methods (e.g. System.println(this.toString()) is equivalent to System.println(toString()))

There is no need to explicitly code any of these aspects.

[image: image17]
2.2.2.2.4 Overly Commented Code

Comments are useful for explaining nontrivial or non-obvious design decisions within code, but avoid extraneous comments that essentially repeat information evident from reading the code itself. Redundant comments can easily get out of synch with the source code and introduce confusion into otherwise understandable code. Also, comments must not be enclosed in ASCII boxes drawn with asterisks or other characters.
2.2.2.2.5 Stating the Obvious in JavaDocs

JavaDocs supplement the details exposed by the Java API itself with information useful to a developer. When a JavaDoc is regurgitating information that is apparent from the method signature—the type of the return value, the number and types of the arguments, and the types of Exceptions that can be thrown—then the JavaDoc is providing no value. The method shown below is accompanied by a valueless JavaDoc.

[image: image18]
JavaDocs that are auto-generated by IDEs need not be deleted entirely, but any template text within them must be removed, at least. Preferably, each non-getter/setter method should have a one-sentence description of what the method does. Public API methods should have more extensive documentation.

2.2.2.2.6 Using Fully Qualified Class Names

Keep your code free from clutter by avoiding fully qualified class names in Java code unless it is absolutely necessary to distinguish between two identically named types.

[image: image19]
2.2.3 References

· Sun Java Code Conventions for the Java Programming Language [April 20, 1999] http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
2.3 Memory Management

2.3.1 Overview
Java, by design, frees developers from memory management burdens suffered by C/C++ developers by providing automatic garbage collection, which is responsible for removing unused objects from memory. Garbage collectors can only remove objects from memory that lack active references, however, so Java developers must take care to remove all active references for objects no longer needed; when developers fail to do this, their Java applications exhibit, in loosely-defined terminology, memory leaks. These memory leak issues are manifested as increasing Java heap usage over time, resulting in an eventual java.lang.OutOfMemoryError when the heap is completely exhausted. This type of a memory leak is referred to as a Java heap memory leak.
Memory leaks can occur in Java if native system resources like database connections, file handlers, and others, are not properly cleaned up. This type of memory leak is referred to as a native memory leak. These types of memory leaks manifest as increasing process sizes over time without any increase in the Java heap usage.

Although both Java heap memory leaks and native memory leaks eventually yield OutOfMemoryErrors, not all OutOfMemoryErrors are caused by Java heap leaks or native memory leaks. OutOfMemoryErrors can also be caused by a fragmented Java heap, due to the inability of the Java garbage collection process to free up any contiguous chunk of free memory for new objects during compaction. In this case, OutOfMemoryErrors can occur in spite of there being significant free Java heap. Fragmentation issues can occur due to the existence of pinned or dosed objects in the Java heap. Pinned objects are those that cannot be moved during heap compaction because of JNI (Java Native Interface) access to these objects. Dosed objects are those that cannot be moved during heap compaction due to references from the thread stacks. Fragmentation issues are often also exacerbated due to frequent object allocations of large sizes (exceeding 1 MB).

It is possible to distinguish native memory leaks and fragmentation issues from Java heap memory leaks by observing the Java heap usage over time by using the memory tools identified below. Increasing usage of the Java heap leading to complete exhaustion indicates the existence of a Java heap memory leak, whereas for native memory leaks and fragmentation issues, the heap usage will not show significant increase over time. For native memory leaks, the process size will increase, and for fragmentation issues, there will be a significant amount of free heap at the time of the occurrence of the OutOfMemoryError.

2.3.2 Guidelines and Recommendations
2.3.2.1 Best Practices

2.3.2.1.1 Understand Your Application’s Lifecycle

Memory leaks can be difficult to detect and fix; sometimes the best policy is to spare yourself the trouble, especially if the potential leaks are not detrimental to the successful operation of your code. Such is the case with code that executes for only a short period of time or uses such little memory that garbage collection never needs to occur. Code that needs to run perpetually, however, will at some point suffer from memory leaks if they do exist. Also, code intended for reuse will need to be free from memory leaks.

2.3.2.1.2 Understand Objects’ Lifecycles

Memory leaks (in the Java sense) occur when supposedly short-lived objects are unwitting referenced by long-lived objects and thus become long-lived themselves. If a developer understands the intended life cycle of objects, he or she will be able to detect situations like these.

For example, consider a class that extracts a particular DOM Node from XML Documents and collects those Node references within a static collection for future use. In this case, the Document is intended to be a short-lived object, only used to gain access to the desired Node; the Node collection is intended to be long-lived.

[image: image20]
The memory leak in this class results from the static collection of Nodes. The collection references Nodes, and the Nodes hold references to their owner Document instance
; the supposedly short-lived Documents are actually being kept in memory by the static collection.
2.3.2.1.3 Expire Data within Caches

A cache is an example of a long-lived object that holds references to shorter-lived objects. To prevent the cache from growing indefinitely, objects within the cache need to be removed at some point to make room for other objects. This can be done explicitly by setting a maximum number of objects for your cache. A more sophisticated cache may use soft references for less-recently cached objects, allowing the garbage collector to remove cache entries when memory needs to be freed. Regardless of the approach, it is important to give your cache an expiration policy.

2.3.2.1.4 Clean up Listener Subscriptions

Besides caches, event listeners can create situations where a long-lived object (the event notifier) maintains references to objects intended to be shorter-lived (the listeners). For example, consider the following class, which will update the text of a button the first time it is clicked.

[image: image21]
After updating the text, the object removes itself as a listener since it no longer cares when the button is clicked. If it did not do this, then the FirstClickTextUpdater would be as long-lived as the JButton instance it listened to.

2.3.2.1.5 Optimize Afterwards

Programmers sometimes are compelled to optimize code for memory usage during implementation of algorithms or business logic. Although noble, the approach usually results in unnecessary complexity, impacting readability and maintainability. Furthermore, the optimization may not benefit the overall program; the code being optimized may only contribute a small amount to the overall program’s memory footprint. Therefore, it is best to implement the logic first, then optimize afterwards if it is determined that optimization is necessary.

2.3.2.1.6 Tune the JVM

The Java Virtual machine can be configured with a variety of standardized and vendor-specific JAVA_OPTS that allow you to dictate the amount physical memory used and to control to a certain extent the behavior of the garbage collection. Tuning the JVM by means of adjusting the Java opts to yield the correct balance of memory consumption and performance.

2.3.2.2 Anti-Patterns

2.3.2.2.1 Storing Arbitrarily Large Data in Byte Arrays

Byte arrays are useful as fixed-sized buffers to temporarily hold data between to streams, but must never be used to store arbitrarily large amounts of data. Not only does this confound JVM memory optimization, but the maximum size of a byte array is 2GB.

[image: image22]
2.3.2.2.2 Singleton Collections

A singleton collection, be it an instance field in a singleton class or a static variable, is a long-lived object that can hold any number of references to other, possibly shorter-lived objects. Use prudence when utilizing such collections; enforce a contract to prevent the collection from growing perpetually and to manage the types of objects being put into the collection.

2.3.2.2.3 Registering Yourself as a Listener at Initialization

In this anti-pattern, an Object’s constructor registers itself (this) as an event listener. Not only is this pattern bad because it leaks the incompletely instantiated object to the notifier, but typically the code exhibiting this pattern fails to remove itself as a listener, introducing the potential for memory leaks.

[image: image23]
2.3.2.2.4 Using the finalize() Method for Non-Memory Purposes

The finalize() method is invoked prior to the garbage collection claiming its life. Since it is a regular Java method, you are free to put whatever code you want in there, but avoid doing anything other than cleaning up memory-related resources. In fact, avoid using finalize() if at all possible since it is invoked indeterminstically. Here are some examples of improper things to do within the finalize() method.

[image: image24]
2.3.2.3 Tools

The section describes a couple of tools bundled with Sun’s JDK useful for memory analysis. Other JDK vendors provide similar tools. There are also a number of commercial and open source profilers available.

2.3.2.3.1 jhat

The heap is the place where Java programs allocate memory for objects, so being able to prod the recessions of the heap is useful for detecting memory leaks. Sun’s Java JDK version 1.5_07 and higher come bundled with jhat, the Java Heap Analysis Tool. If you provide a -XX:+HeapDumpOnOutOfMemoryError java argument to your JVM, a heap files will be produced when the JVM runs out of memory which you can inspect with jhat.

2.3.2.3.2 jconsole

Through another JDK-bundled tool, jconsole, you can monitor thread and memory usage of a JVM instance in real time. If your custom code implements the Java Management Extensions interfaces that are now part of JavaSE (as of 5.0), the console can give you even more detailed information.

2.3.3 References
· How to Fix Memory Leaks in Java http://java.dzone.com/news/how-fix-memory-leaks-java
· Understanding Weak References http://weblogs.java.net/blog/enicholas/archive/2006/05/understanding_w.html
· Bitter Java by Bruce Tate (Chapter 6) http://www.manning-source.com/books/tate/tate_ch06.pdf
2.4 Security Standards
2.4.1 Overview
The CERT® Program is a federally-funded research center that has published a comprehensive set of secure coding guidelines for Java called The CERT Sun Microsystems Secure Coding Standard for Java. These guidelines are considered part of the USPTO coding standards. This section highlights some of the more important guidelines.

2.4.2 Guidelines and Recommendations
2.4.2.1 Best Practices

2.4.2.1.1 Use Methods to Encapsulate Access to Instance Variables

Non-private instance variables cannot be overridden by subclasses and are more subject to threading concerns, thus it is generally better to encapsulate instance variable access behind methods such a getters and setters. One example of appropriate public instance variables is the case where the class is essentially a data structure, with no behavior—the Java equivalent of a struct in C. Struct-like classes in Java should be marked as final and preferably made private.

2.4.2.1.2 Prevent Constructors from Calling Methods that Can be Overriden

Do not call methods that can be overridden from a constructor, since that exposes a reference to this (the object being constructed) before the object has been fully initialized. Likewise, do not invoke methods that can be overridden from clone, readObject, or readObjectNoData; attacks against partially initialized objects can be mounted in these cases as well.

2.4.2.1.3 Mark Instance Variables Storing Sensitive Data as transient
When an object is serialized, non-transient instance variables are written, potentially leaking sensitive information such as passwords, keys, and certificates; variables referencing such information must be marked as transient.

2.4.2.1.4 Declare Methods Performing Security Checks as private or final
Security checks can be bypassed by a malicious subclass that overrides the method that performs this. To prevent this, make the method final or private.

2.4.2.2 Anti-Patterns

2.4.2.2.1 Hard-coded Sensitive Data

Do not hardcode passwords, cryptographic keys, or other sensitive data within code. Externalize such data within a protected directory of the deployment tree.
2.4.2.2.2 Manually Concatenated SQL Statements

SQL is susceptible to injection attacks when statements are generated by concatenating SQL statement fragment Strings with improperly validated user-provided Strings, as demonstrated in the following code snippet:

[image: image25]
If a user were to provide an arbitrary username (say, johndoe) and a password of 'OR '1' = '1, then the String concatenation would yield the SQL statement: select * from db_user where username = 'johndoe' and password = '' OR '1' = '1'. Since '1' = '1' always evaluates to true, the SQL statement returns successfully and the authenticate method fails to throw a SecurityException.

Avoiding this problem can be achieved by sanitizing the user input. JDBC offers a query string constructing mechanism for this purpose, as demonstrated in the corrected code snippet below (note that this approach also allows the SQL to be more easily externalized).

[image: image26]
2.4.3 References

· The CERT Sun Microsystems Secure Coding Standard for Java https://www.securecoding.cert.org/confluence/display/java/The+CERT+Sun+Microsystems+Secure+Coding+Standard+for+Java
2.5 Threading and Concurrency
2.5.1 Overview
Threading and concurrency standards are intended to give developers an awareness of the problems that can arise when code is executed concurrently by multiple threads and provide suggestions for safeguarding Java code from these problems.

2.5.1.1 Terminology

This document uses the terms thread safety, synchronization, and concurrency essentially interchangeably. However, each term has a distinctive definition:

· Concurrency – simultaneousness; specifically in regards to more than one thread executing the same piece of code at a given time.

· Synchronization – serializing access to shared resources so that only one thread, at most, accesses those resources at any given time. Furthermore, if a thread alters the state of that resource, the altered state is visible to the subsequent thread accessing that resource.

· Thread-safe – the characteristic of being able to ensure deterministic, desired behavior when multiple threads are concurrently executing. Thread safety can be achieved through synchronization of threads so that shared resources are accessed by only one thread at a time.

· Atomic – indivisible; operations that are atomic cannot be partially executed and therefore are thread-safe.

· Lock – also called a monitor, an object which must be obtained and held by a thread in order to execute some code. While a thread is holding a lock, any other thread wishing to execute the same code must wait until that thread releases that lock.

· Thread Contention – when multiple threads are attempting to obtain and hold a single lock.

· Deadlock – a situation where a thread holding lock A is contending for lock B, which is held by another thread contending for lock A. The threads cannot release their respective locks until the contention is resolved, but the contention cannot be resolved until threads release their locks, and thus, the contention is perpetual. More complex deadlocks can occur with multiple threads and multiple locks.

· Critical Section – a portion of code that needs to be executed atomically to ensure the thread-safety of the entire program.

2.5.1.2 Java Support for Threading and Concurrency

The Java language and platform contains features for supporting concurrency (i.e. Threads) and to ensure thread safety when concurrency is used. This section describes these features as a background for the following sections on best practices and anti-patterns.

2.5.1.2.1 Java Platform Support

Java provides fundamental support for concurrency. Besides the obvious java.lang.Thread, the java.lang.Object class, root of all Java classes, contains methods for communicating across multiple threads. The Java language itself has two reserved keywords that deal specifically with concurrent code: synchronized and volatile.

2.5.1.2.1.1 The synchronized Keyword

The synchronized keyword provides a language-level locking mechanism on some arbitrary object that ensures asynchronously running threads can execute a particular block of code in tandem.

[image: image27]
Prior to the code block being executed, a thread must obtain the lock on the object reference, which it will hold until the block has completed executing. Any other thread attempting to execute the code block must wait until the locking object is released by the first thread before it can hold the lock and execute the code block. Threads contending for this locking resources impacts performance, so programmers will typically only synchronize when absolutely necessary.

As a convenience, synchronized can be used as a method modifier, although this is semantically equivalent to inserting a synchronized block on this within the entire method body:

[image: image28]
2.5.1.2.1.2 The volatile Keyword

The Java Memory Model permits threads to create local copies (caches) of fields to use instead of the master copy. However, there are circumstances in which modifications to a field’s value by one thread need to be immediately reflected to all threads. The volatile keyword is used to indicate such a field. Java guarantees that volatile fields have the same value to all threads; it enforces that a change in field value made by a thread is immediately visible to the subsequent thread accessing that field.

In the following example, the volatile keyword is essential for the code to work properly because without it, the thread executing the loop could cache the boolean value when it begins looping. Invoking the deactivate() method will update the boolean field, but will not immediately update the cached copy.

[image: image29]
2.5.1.2.2 Concurrency API

JSR 166 resulted in the creation of a new Concurrency API in JavaSE 5.0. The API contains a number of utility classes that provide

· Flexible locking objects (improves upon basic synchronized approach),

· Configurable lock contention policies (improves upon wait() and notify() methods),

· Guaranteed atomic reads and writes without the need for explicit locking (improves upon volatile field handling)

· Enhanced concurrency support with Futures, Synchronizers and Executors (improves upon Thread and ThreadGroup)

· Concurrent Collections implementations and thread-safe Queues (improves upon Collection usage in a multi-threaded environment).

The Concurrency API is now preferred over the standard Java platform’s concurrency and synchronization mechanisms, not only for its utility but because Java compiler and runtime implementations are more likely to be consistent. For example, we can replace the volatile looping flag from the previous code example with an AtomicBoolean.

[image: image30]
The Concurrency API was updated in JavaSE 6.0 and is slated for another significant update in Java 7.

2.5.2 Guidelines and Recommendations
2.5.2.1 Best Practices

2.5.2.1.1 Understand Your Execution Environment

Even if your Java code doesn’t directly spawn additional Thread instances, your code may still by subject to concurrency concerns if it executed within a multi-threaded context or relies on code libraries that spawn additional threads. Servlet containers, JavaEE application servers, and Swing applications are examples of multi-threaded contexts.

Assuming the connection thread pool size is greater than one, a single Servlet can be invoked concurrently by multiple threads when near-simultaneous HTTP requests occur. The Swing API allows you to implement listeners, which can get invoked asynchronously (e.g. a java.awt.event.KeyListener is invoked upon every keystroke).

2.5.2.1.2 Identify Shared Resources

Writing thread safe code requires that you identify which resources are shareable across multiple threads. If these resources are mutable, threads are free to update or replace their values; access to such resources must be synchronized. Alternatively, if the resource does not need to be modified, then the resource can be made immutable, which eliminates the need to synchronize access to the resource.

2.5.2.1.3 Read JavaDocs for Thread Safety Notes

Well documented APIs, including JavaSE, JavaEE, Spring, among include thread safety information in their JavaDocs. When using these APIs, be certain to understand any synchronization implications and handle them appropriately. For example, java.lang.StringBuffer and java.lang.StringBuilder provide identical functionality except the latter provides “no guarantee of synchronization.”

2.5.2.1.4 Document Synchronization Details in JavaDocs

When designing classes, determine whether the class itself must address synchronization concerns. Reflect this decision within the class’ JavaDocs. As an example, the JavaDoc for java.util.HashMap warns about possible synchronization issues and gives advice for thread-safe usage.

2.5.2.1.5 Make Objects Immutable When Possible

Apart from synchronization, immutability can provide thread safety. Immutable objects do not need to be synchronized because they cannot be changed; there is never a concern that an immutable object will be modified while it is read or that multiple threads are racing to modify the object simultaneously. Because immutability provides thread safety without the overhead of synchronization, use it whenever possible. The following code snippets highlight differences between a mutable and immutable Java class. In addition to not providing setter methods, make sure to mark your immutable fields as final.

[image: image31]
Ideally, the API enforces immutability by not providing any methods by which an object can be modified (i.e. no setter methods). Alternatively, immutability can be enforced at runtime by throwing an exception whenever a mutator method is invoked. Although these exceptions are only manifested during runtime, they are more easily debugged than strange, non-deterministic behavior that can result from thread unsafe code. The most common example of this is immutable Collections. Because the Collections API (java.util) interfaces such as List, Map, and Iterator have mutator methods, runtime exceptions must be used to enforce immutability. The java.util.Collections class contains static methods which create immutable versions of collections that throw runtime UnsupportedOperationExceptions whenever a mutator method is invoked.

[image: image32]
Another notable runtime exception is java.util.ConcurrentModificationException. This exception is used to signal conditions when a collection is modified by a thread while a second thread simultaneously iterates over it. Although you can develop code to detect such situations and throw this exception appropriately, more often this exception will be helpful for debugging situations when you need to treat a collection as being immutable.

Custom, collection-like APIs that lack mutator methods altogether can be used to avoid the need for runtime exception, but before creating such APIs, weigh the convenience and ubiquity of the Java Collections API interfaces against the utility of API-enforced immutability. DOM interface org.w3c.dom.NodeList is an example of an immutable collection, but it does have a number of shortcomings: no Iterator access, it cannot be traversed with the new Java 5.0 for loop construct, it cannot be sorted with a Comparator, it cannot be wrapped easily by an ArrayList or HashSet, and so on.

2.5.2.1.6 Synchronize Only When Necessary

As mentioned earlier, synchronization ensures thread safety at the cost of forcing threads contending for the same shared resources to wait for earlier threads to release locks. Thus, it is important for performance purposes to keep synchronization at a minimum.

To start, minimize the number of fields accessible to other threads by localizing variables within methods or inner code blocks. For fields that must be exposed, synchronize only long enough to complete the read or write of the field value. Likewise, if any particular resources require synchronized access, lock on them only as long as it takes to complete the read or write.

[image: image33]
2.5.2.1.7 Synchronize on Appropriate Objects

Choosing the appropriate object to synchronize on is important to both synchronize correctly and to reduce thread contention. Although any arbitrary, non-null object can be used by the synchronized construct, there are only a handful of good choices; the choice you make depends on the type of data you are attempting to synchronize.

2.5.2.1.7.1 Static Variables

When synchronizing access to static variables, synchronize on the java.lang.Class literal of the class defining the static variable or use synchronized static methods.

[image: image34]
2.5.2.1.7.2 Immutably-Typed Instance Variables

When accessing instance variables whose types are immutable (primitives, java.lang.Strings, java.net.URIs, etc.), synchronize on their containing object’s instance (i.e. this) or a dedicated lock object. In general, the latter approach is used when the class holds multiple instance variables requiring synchronized access since locking on this blocks access to all of its instance variables. When using a dedicated lock object, only use private, final java.lang.Object instances. They are cheap to instantiate. Do not use classes such as String and primitive wrappers because the JIT compiler could use such objects outside of the class for optimization purposes.

[image: image35]
2.5.2.1.7.3 Mutably-Typed Instance Variables

For types that are mutable, such as Java Collections or typical Java Beans, the instance variable itself should be used as the synchronization object provided the variable is not null and you are not attempting to change the variable’s reference. This is preferable to using an explicit locking object or synchronizing on this, although any of these three approaches will work.

[image: image36]
2.5.2.1.8 Prefer the java.util.concurrent API (Java 5.0+)

As discussed earlier, the Concurrency API introduced in JavaSE 5.0 provides excellent utility classes for dealing with concurrency and synchronization. A previous code example demonstrated how the AtomicBoolean is preferred over a volatile boolean primitive. Executors are preferred over working with Threads directly. Concurrent Collections are preferred over manually synchronized java.util Collections.

2.5.2.1.9 Lazily Initialize Singletons with the Instance Holder Pattern

Lazily-initialized singletons are singletons that are not initialized until the first request for the sole instance is made, at which point the class is constructed and cached for later use. Multiple threads may compete (i.e. race) to make this first request, so the construction of the instance must be synchronized to ensure it is instantiated only once. Furthermore, because synchronization incurs overhead, it is preferable to not synchronize access to the singleton instance after it has been initialized. The best approach for fulfilling both requirements is using the instance holder pattern.

[image: image37]
This pattern takes advantage of the Java design that the static LazySingletonHolder class does not get initialized (and thus LazySingleton is not initialized) until it is needed when the getInstance() method is first invoked. Because initialization is guaranteed to be thread-safe, explicit synchronization is not necessary. Furthermore, since initialization of LazyHolder occurs only once, then the reference to the singleton is cached for future calls to the getSingleton() method.
2.5.2.1.10 Use Concurrency to Improve User Experience

Threads perform work; when a thread is blocked, either because it is waiting for the release of a lock, or has been explicitly been put to sleep until further notification, work is not done. Carefully consider the need to prevent threads from accomplishing work.

Also, always look for opportunities to do work concurrently. A common example is delaying the rendering of a user interface until all of the dropdown lists have been fully populated. Often it’s possible to populate lists and render the interface in parallel, or delay the population of the list until the user explicitly interacts with it. Either way, the user sees the interface more quickly than in a serial, non-concurrent approach.

2.5.2.2 Anti-Patterns

2.5.2.2.1 Unsynchronized Reads

Programmers often overlook the need to synchronize when reading an object's fields. Unless these fields are declared using the volatile keyword or the read operation is synchronized, Java permits threads to create local caches of these variables to read and write from. Thus, it is possible to read a stale value if the change to a local copy has not been propagated to the master copy. This anti-pattern manifests itself in classes where writes to non-volatile shared resources are synchronized appropriately but reads are not.

[image: image38]
2.5.2.2.2 Inappropriate Locking Objects

Correct synchronization requires using the appropriate locking object. First, the locking object needs to be scoped correctly to ensure that another thread cannot access the resource via another lock. Secondly, the locking object itself must not be a String or a primitive wrapped class such as Integer or Long. The reason for this is because Java compilers may intern Strings for performance and memory efficiency purposes, causing the Strings to actually reside in the global, JVM level, rather than the intended local level. If you ever need to acquire two locks at once, document the ordering thoroughly and make sure you always use the same order. The following code examples highlight instances where the incorrect locking object is used.

[image: image39]
2.5.2.2.3 Direct Invocation of Thread.run()
A Thread’s run() method (whether it is implemented in a subclass or by a java.lang.Runnable instance provided to the Thread’s constructor) contains the code which the Thread will execute. If you invoke the run() method directly, however, then the code will be executed synchronously by the current thread of execution; the JVM will not spawn a new Thread unless the start() method is invoked. If you’re invoking the run method directly, then most likely you are not using the Thread as it was intended.

2.5.2.2.4 Single-checked locking

Lazily-initialized singletons are singletons that are not initialized until the first request for the sole instance is made, at which point the class is constructed and cached for later use. After that, such classes are immutable and do not require synchronization to access. Developers often try to avoid the overhead of synchronization by only synchronizing when the singleton instance is null. However, because synchronization is required for reads as well as writes, this approach fails to achieve these aims.

[image: image40]
2.5.2.2.5 Double-checked locking

More experienced developers are aware of the single-checked lock’s failings, so they cleverly add a second null check to the process. This, too, does not work, especially if the developer forgets to mark singleton instance variable as volatile. Even if it is volatile, the double-checked locking approach is not guaranteed to work when using Java 1.4 or earlier, due to problems with the Java Memory Model specification. Therefore, it is advisable not to use double-checked locking at all; instead, prefer the singleton holder approach described in the best practices section.

[image: image41]
2.5.2.2.6 Leaky Constructors

Java guarantees that only one thread is going to executing within an object’s constructor during initialization, provided you do not expose (or “leak”) a reference to the object’s instance to other threads. If the constructor leaks a reference, it is possible that threads will see an incompletely initialized instance of the object, resulting in race conditions and JVM implementation-dependent behavior. Object references can be leaked by a constructor in two ways, explicitly and implicitly.

2.5.2.2.6.1 Explicit Leaks

Explicit leaks occur when this is used to expose a reference within a constructor, such as setting the value of a static field to this or passing this to an event listener. Thus, using this within a constructor must be avoided apart from accessing instance fields or invoking instance methods. The following constructors explicitly leak:

[image: image42]
2.5.2.2.6.2 Implicit Leaks

An object can leak a reference to itself without explicitly using this. First, non-static inner classes (anonymous or named) hold an implicit reference to their outer class. Thus, if you expose an instance of an inner class to outside threads, you implicitly expose an instance of the object as well. Second, Threads started within the object’s constructor will also hold implicit references to the potentially incompletely instantiated object. Never start a thread within an object’s constructor. The following constructors implicitly leak:

[image: image43]
2.5.2.2.7 Unnecessary Synchronization

Avoid unnecessary synchronization. This reduces locking overhead, the amount of time threads are blocked as they wait for locks, and the potential of deadlock occurrences.

2.5.2.2.8 Static Instances of DateFormat or DecimalFormat

To reduce the multiple instantiations of java.text.SimpleDateFormat or java.text.DecimalFormat, developers will often create a sharable, static instance to reuse. These classes, however, are not thread-safe can cause problems when parsing concurrently. Instead, the format String can be made into a constant and a new SimpleDateFormat or DecimalFormat instance can be created on demand. The cost of multiple instantiations is low in comparison to thread safety risks.

[image: image44]
2.5.2.2.9 Thread-unsafe DOM Usage

DOM implementations are typically thread-unsafe, so avoid exposing org.w3c.dom.Node instances to other threads. Furthermore, it’s difficult to determine what the appropriate locking object is: a Node itself, the Node’s owner Document, NodeLists? Therefore, keep all DOM operations localized to the greatest degree possible; when it’s not possible, be very diligent in selecting a locking strategy or consider a DOM alternative.

2.5.2.2.10 The Not-so-atomic ++ Operator

The ++ operator is not atomic. It’s a convenient syntax for performing the non-atomic operations of incrementing and re-assigning. Thus, when the operation needs to be executed atomically, proper synchronization must be employed. In the case below, either the next() method needs to be synchronized or, preferably, an AtomicInteger is used in place of the volatile int.

[image: image45]
2.5.2.2.11 The Not-so-atomic 64-bit Primitives

Java guarantees that read and write operations preformed on primitives are atomic. Caveat: provided the primitives are 32-bits or less. Because long and double require 64-bit, then reads and writes of these primitives are not entirely safe. Thus, such fields must be marked as volatile for safe use within multithreaded environments.

[image: image46]
2.5.2.3 Tools

The best tool for developing thread-safe, concurrent code is a solid understanding of the Java Memory Model and the semantics of synchronization. However, there are some tools that will assist in verifying the thread-safety of code.

2.5.2.3.1 Multi-core Processors

Some thread safety problems will not reveal themselves unless code is executed by a multi-core processor; single core processors are ultimately capable of executing only one machine operation at a time. Because multi-core processors can truly execute operations concurrently, test code on multi-core machines as much as possible.

2.5.2.3.2 Multi-threaded Capable Unit Testing

Unit tests can be written to check for concurrency problems. Unfortunately, JUnit itself (as of version 4.5) will kill threads spawned within a test method as soon as the thread executing the test method completes. Look for tools, such as GroboUtils, that offer workarounds to this limitation.
2.5.3 References
· Sun Java Concurrency Tutorial: http://java.sun.com/docs/books/tutorial/essential/concurrency/index.html
· Concurrency Utilities http://java.sun.com/j2se/1.5.0/docs/guide/concurrency/
· Threading lightly, Part 1: Synchronization is not the enemy http://www.ibm.com/developerworks/library/j-threads1.html
· Java Platform Concurrency Gotchas – Alex Miller: http://puredanger.com/techfiles/JavaOne_ConcurrencyGotchas.pdf
· JSR 133 (Java Memory Model) FAQ http://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html
· Java theory and practice: Safe construction techniques http://www.ibm.com/developerworks/java/library/j-jtp0618.html
· Multithreaded Tests with JUnit http://today.java.net/pub/a/today/2003/08/06/multithreadedTests.html
2.6 Logging
2.6.1 Overview
2.6.1.1 Error Handling in Java
2.6.1.2 Logging in Java

Logging, in simple terms, is the capturing of information as a program executes. Typically, this information gets recorded in log files, although the information can be recorded in whatever locations the developer sees fit. Although not necessarily related to error handling, developers often log errors thrown during program execution; most logging APIs provide explicit methods for logging Exceptions.

2.6.2 Guidelines and Recommendations
2.6.2.1 Best Practices

2.6.2.1.1 Use Logging

Logging is beneficial for monitoring application behavior, automatically capturing application runtime information, and debugging, especially in multi-threaded environments. Logging will add runtime overhead and increase the size of your codebase, so log judiciously.

2.6.2.1.2 Use Guarded Logging

Guarded logging is the pattern of explicitly asking the logger if it will log at a particular level before providing it with the message to log. Although seemingly redundant, such a practice can save the overhead of constructing the logging message, especially if it requires many String concatenations and/or invoking costly toString() implementations.
Because unguarded logging statements are easier to read, use guarded logging only when the guard provides value: when the generation of the logged message is expensive and the logging level is fine (e.g. INFO, DEBUG, and TRACE). Guarded logging is unnecessary for the coarsest logging level (e.g. FATAL or SEVERE) since messages at that level are always logged.

[image: image47]
2.6.2.1.3 Log at the Appropriate Level

Log statements can be made at different levels, each with their own intended purpose. A log statement at a particular level will appear in a log configured to log at that level or at a finer level. Note, the names of the levels can vary depending on the Logging API:

· Trace – the finest level at which logging can be made; use only for tracing executing flow within an application, such as recording when methods are entered and exited.

· Debug – a fine level although not as fine as Trace; as the name implies, Debug is intended to aid developers with debugging.

· Info – the standard logging level and generally the finest level at which production systems will log. Use sparingly to report important, expected application events.

· Warn – used to report unexpected, potentially detrimental events. For example, if a configuration loader cannot locate a particular configuration value, it may be able to use a default value instead but warn that it could not find an explicit value.

· Error – the error level is reserved for reporting unhandled exceptions. These calls typically appear in catch blocks.

· Fatal/Critical/Severe – the coarsest level; the Fatal logs are intended to report problems that must be dealt with immediately. For example, if you have an e-commerce system that collects payments, a critical log call would be made when a payment transaction fails.

2.6.2.1.4 Separate Technical and Business Logging

Technical logging is for the developer or operational staff for problem detection, analysis, and resolution. Different from this is the logging of business events that may provide data for performance (SLA monitoring/management) and transaction auditing and reconciliation.

Business logging can be accomplished via enterprise frameworks, or in the absence of those frameworks, via the same logging mechanism used for technical logging. The important consideration is to make sure the business log messages are distinguishable from the technical log messages. For example, within Log4J, the best way to achieve this distinction is to use a custom log level, such as “BusinessInfo.”
2.6.2.1.5 Declare a Logger per Class

The current industry standard is to create a final logger instance per class, named using the class’s fully qualified name.

[image: image48]
The transient keyword is optional, and is only necessary when the class defining the logger can be serialized (marking the Logger as transient prevents the log instance from being serialized). The name used for the Logger reference is a mater of taste; the USPTO recommends log.

2.6.2.2 Anti-Patterns

2.6.2.2.1 Log and Re-throw

[image: image49]
Avoid logging a caught exception, especially its stack trace, and then re-throwing afterwards as-is or wrapped within a different exception type. Logging and re-throwing results in multiple log entries for the same underlying problem, making it more difficult to track down the problem’s source.
Logging ideally occurs at the point of the original throw and possibly at the point of ultimate handling (depending on whether handling the exception is important or not).

2.6.2.2.2 Back-to-Back Logging Statements

[image: image50]
Combine multiple log statements at the same level into a single log statement; combine log statements at different levels loggin the same information into a single statement at the coarser statement’s level. For example, a log.info() followed by a log.debug() would be combined into a single log.info() call. Reducing the number of log statement can save I/O time, especially when log statements are written to a file, and can improve log output readability in concurrent applications; adjacent logger calls will not necessarily result in adjacent log entries in multithreaded environments.

2.6.2.2.3 Logging to System.out or System.err
Do not log to System.out or System.err unless you are writing a simple command line tool. Use a logging API instead. This allows you to control the locations and amount of output logged by the application.
If a logging API is used within a code base, there must not be any occurrences of System.out or System.err for logging purposes.
2.6.2.2.4 Logging User Errors above INFO Level

A user error is an anticipated failure of a user to perform the correct action or provide valid input. For example, input validation frameworks will typically signal invalid data by throwing custom Exceptions. Log these Exceptions at an INFO level or finer since they likely do not represent actual problems with the application itself. Furthermore, do not log stack traces since they do not provide any useful information to system administrators and waste file space.

2.6.2.3 Tools

A variety of logging frameworks exist, including one that comes bundled with Java SE (java.util.logging, also known as JUL). Popular open source logging frameworks for Java include Apache log4j, Just4Log, jLo, Commons Logging, and slf4j. Of these, log4j is preferred.
2.6.3 References

· Java Logging Overview http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html
· Apache Commons Logging http://commons.apache.org/logging/userguide.html
· Logging with log4j http://www.developer.com/java/ent/article.php/3097221/Logging-with-log4jmdashAn-Efficient-Way-to-Log-Java-Applications.htm
· Short Introduction to log4j http://logging.apache.org/log4j/1.2/manual.html
· Java Logging Tools and Frameworks http://www.java-logging.com/
· Code Monkeyism: 7 Good Rules to Log Exceptions http://codemonkeyism.com/7-good-rules-to-log-exceptions/
2.7 Error Handling

2.7.1 Overview

Java provides language-level mechanism for signaling errors. Errors are signaled by throwing instances of java.lang.Throwable, which can be subsequently caught by code interested in responding to these errors using try/catch blocks. Java provides two subtypes for Throwable:
· java.lang.Exception: An Exception is a Throwable that an application might want to catch.
· java.lang.Error: An error is a Throwable that an application should not attempt to catch since it indicates non-recoverable failures.

Java classifies all Throwable types as either checked or unchecked.

2.7.1.1.1 Checked
The checked types are java.lang.Exception and subclasses. Checked exceptions are specified as part of a method signature and indicate to clients the problems that could occur when the method is invoked. They are called checked because the compiler will force any code invoking such methods to catch the Exceptions and/or propagate them up the call chain.

[image: image51]
For example, any code that wants to call the writeList() method must handle the IOException.

2.7.1.1.2 Unchecked

Unchecked types include Error and RuntimeException (a special subclass of Exception). The compiler will not force client code to handle unchecked exceptions, even if they do appear as part of a method signature.

[image: image52]
Even though the writeList method indicates that it throws an ArrayIndexOutOfBoundsException, client code is not required to handle it. Thus, the two writeList() method signatures are semantically equivalent.

2.7.2 Guidelines and Recommendations

2.7.2.1 Best Practices

2.7.2.1.1 Define Custom Exception Types for APIs

When creating an API, avoid putting typed Exceptions in method signatures that would enforce a particular implementation. Consider the following interface method:

[image: image53]
The signature’s java.io.FileNotFoundException implies that every method implementation will, in some manner, use a java.io.File for retrieval purposes. However, an implementation does not necessarily require use of a File. Therefore, the method would be better described with a custom Exception type:

[image: image54]
2.7.2.1.2 Perform Cleanup Actions within finally Blocks

The Java language specification guarantees that a finally block will be executed when a try block is executed, which makes it an excellent place to perform cleanup actions (closing a database connection, closing InputStreams, etc.). You can even use a finally block without a catch block for situations where you cannot adequately handle exceptions thrown within the try block.

[image: image55]
2.7.2.1.3 Throw UnsupportedOperationException from Unimplemented Methods

If you provide a partial implementation of an interface such that certain methods have no method body, then those methods must throw a java.lang.UnsupportedOperationException to signify that the method is not implemented.
2.7.2.2 Anti-Patterns

2.7.2.2.1 Throwing java.lang.Exception

[image: image56]
This tells your callers "something can go wrong in my method" and provides no useful information to clients for how to deal with thrown Exceptions. Instead, declare the specific checked exceptions that your method could throw. If there are several, consider creating an Exception subtype with methods that can provide more detailed information if needed.

2.7.2.2.2 Throwing the Kitchen Sink

[image: image57]
Declaring multiple exceptions for a method is fine provided there are different courses of action the caller could take for each exception thrown. If multiple exceptions represent the same fundamental problem, then define a new custom Exception to represent that fundamental problem in the method signature.

2.7.2.2.3 Catching java.lang.Error or java.lang.Throwable

[image: image58]
Java Errors represent abnormal problems in the JVM, such as running out of memory for allocating objects, that applications have no reasonable way to recover from. Since Throwable is a superclass of Error, any attempt to catch a generic Throwable could result in an Error being caught. Never catch Errors and Throwables unless it is absolutely necessary.
2.7.2.2.4 Destructive Wrapping

[image: image59]
This destroys the stack trace of the original exception. This approach could legitimately be used for security reasons, namely when the original exception could reveal sensitive information to end users; by throwing a user-focused exception, sensitive information would be masked. However, in such circumstances the originating exception must be logged.

2.7.2.2.5 Using a Null Return Value to Signal Exceptional Behavior

[image: image60]
Avoid using a null return value to signal exceptional behavior since it provides no information about the underlying problem. In the above example, the readLines() method could fail for a variety of reasons: the file doesn’t exist, the file represents a directory, insufficient permissions to read the file, etc., yet none of this potentially useful information is conveyed to the client. This anti-pattern is similar to throwing a general java.lang.Exception.

2.7.2.2.6 Using Return Values to Signal Exception Behavior

As with null return values, avoid using boolean, int, or enumerated return values to signal exceptional behavior (e.g. a false or negative integer return value indicates the method did not execute properly).

2.7.2.2.7 Swallowing Exceptions

[image: image61]
An exception is considered “swallowed” when it not propagated or reported after being caught. If the swallowed exception indicates a problem that needs to be addressed, then no information is being captured when the problem occurs, making it more difficult to debug.

There are infrequent but legitimate times, however, when it is the correct to catch the exception and do nothing with it. For such occurrences, as with any method (or block) that intentionally empty, there must be a comment reiterating this intention.

[image: image62]
2.7.2.2.8 Throwing Exceptions or Returning Within finally
If the code that you call within a finally block can possibly throw an exception, make sure that the exception is handled; never let it escape the finally block. This usually becomes a problem when the finally block is cleaning up resources such as DB Connections or File Handles, where the call to close() can itself throw an Exception. These calls must either be wrapped in their own try/finally block or delegated to a utility method which closes the resources safely (i.e. never throwing an Exception). Similarly, because Java guarantees that finally blocks will always be executed, never return from within a finally block. Consider the following examples:

[image: image63]
2.7.2.2.9 Relying on getCause()

[image: image64]
Using getCause() causes code to rely on an implementation detail instead of the API. If you must get to a cause, use the root cause in case the implementation changes and wraps the cause with an intermediate Exception. Apache's commons-lang project provides ExceptionUtils.getRootCause() to locate the root cause easily.

Nested exceptions have their use, but their misuse is more common, such as when a specific exception is nested into generic Exception in order to avoid specific exception signatures on methods. The real value of nested exceptions is when transitioning from technical exceptions (e.g., DBConnectionFailedException) to custom business exceptions (e.g., InvalidWorkflowStepTransitionException), and we want to record the technical “cause” within the business exception.

2.7.2.2.10 Using Exceptions for Control Flow

[image: image65]
In this example, Exceptions are thrown to change the code execution path, essentially acting as GOTO commands. This is a misuse of Exceptions since the code execution path is navigated based on anticipated conditions, not because of unexpected, exceptional behavior. Additionally, the JVM overhead incurred with exceptional handling makes control flow logic implemented this way unnecessarily resource intensive.

2.7.3 References

· Sun Java Exception Tutorial http://java.sun.com/docs/books/tutorial/essential/exceptions/
2.8 General Programming Practices
2.8.1 Overview
The CERT Sun Microsystems Secure Coding Standard for Java includes many good practices and recommendations not necessarily related to security. This section highlights some important guidelines and provides some supplementary practices and anti-patterns.
2.8.2 Guidelines and Recommendations
2.8.2.1 Best Practices

2.8.2.1.1 Access Static Variables and Methods without Object References

Avoid using an object reference to access a class (static) variable or method. Use the class name instead. Using instances to access static variables and methods can introduce confusion, as demonstrated by the example below, which will compile and run successfully (no NullPointerExceptions) and print “Hello!” six times.

[image: image66]
2.8.2.1.2 Choose the Appropriate Collection Type

Java provides natively supported Arrays and the Java Collections API for working with groups of objects. Use the following list to help you select the appropriate Collection type.

· Fixed-size or dynamically resizable? If fixed size, arrays are likely the best choice for performance purposes; otherwise, use one of the java.util.Collection implementations

· Numerically indexed? If you need a numerically indexed collection, you can either use an array or a List implementation.

· No Duplicate Elements? If you do not want duplicate elements, use a Set implementation. If you also need total ordering in addition to unique elements, use SortedSet implementation.

· Thread-safe? Vector is the traditional option, but as of Java 5 there are also a number of thread-safe options within the java.util.concurrent package.

· Supports null elements? Arrays and essentially all Collection implementations permit null elements with the exception of ArrrayDeque. Most of the java.util.concurrent Collection implementations do not support null elements.

· Last-in-first-out operations? The Queue and Deque (short for “double-ended queue”) interfaces provide these methods, as does the Stack class.

· High Performance? Being native, arrays typically offer better performance than Collection implementations if you’re willing to suffer its drawbacks. If you opt for the Collections API, you need to take into consideration which operations are most frequently used. For example, a LinkedList supports insertions at the head of the list in constant (O(1)) time whereas ArrayList in linear time (O(n)).

2.8.2.1.3 Avoid Magic Numbers

Magic numbers are numeric literals embedded within code outside of constant declarations, with the exceptions of -1, 0 and 1. By moving these numbers to constants, you are forced to name the values, which provides more insight about their purpose and possibly their value, not to mention improving the maintainability of the code.
If magic numbers represent important technical information (e.g., default connection timeout, or default initial result set size) or important business information (e.g., default parameter value), then they are good candidates for externalization, as described in the following section.
2.8.2.1.4 Externalize File Paths, SQL, and Other Platform-Dependent Data

Hard-coded file paths create operating system-specific dependencies in code that could otherwise be portable. It is better to load files from the classpath if they’re available on the classpath. If not, externalize the file name into a classpath-accessible configuration file.

Hard-coded SQL statements introduce an unnecessary coupling between the application and database, and can possibly create security issues and prevent database analysis and optimization.
2.8.2.1.5 Assign Variables Safely
Make variable assignments more safely with these practices:

· Avoid assigning several variables within a single statement. Although it saves keystrokes, it reduces readability and provides no runtime performance gains.
[image: image67]
· Avoid assigning variables within expressions returning a Boolean result, such as within if or assert conditionals.

[image: image68]
2.8.2.1.6 Build Strings Efficiently

Strings are immutable. Modifications to a String, such as appending or removing characters, actually create modified copies of the String. Avoid creating multiple, unnecessary copies by building Strings in an efficient manner. Consider the following code. The first method demonstrates inefficient ways to build Strings; the second method demonstrates efficient ways.

[image: image69]
The efficiency of these two methods is evident by looking at the decompiled bytecode produced from the above .class file.

[image: image70]
2.8.2.1.7 Declare Methods final Only if Necessary
Modern optimizing dynamic compilers can perform inlining and other inter-procedural optimizations, even if Java methods are not declared final. Use the keyword final as it was originally intended: for program architecture reasons and maintainability.

Only if you are absolutely certain that a method must not be overridden, use the final keyword.
2.8.2.1.8 Put Potentially Null References on Expressions’ Right Hand Side

For example, use "foo".equals(foo) instead of foo.equals("foo"). Since the string literal is guaranteed to be non-null, you can avoid performing a null check on the foo reference.

2.8.2.1.9 Minimize Usage of Java Generics

Generics are useful for adding some type safety to Collections and the like, but when they are overused, the type safety benefits can quickly get outweighed by diminished readability, limited reusability, and potential compilation problems between minor JDK releases. For example, the following class does not compile under Sun’s JDK 1.6.0_13 but will under version 1.6.0_14:

[image: image71]
2.8.2.1.10 Provide Consistent hashCode() and equals() Implementations

The java.lang.Object’s JavaDocs mandate that these methods behave consistently. Specifically, if two objects are equal, then they must have identical hash codes. If the two objects are unequal, they are not required to have identical hash codes, although such behavior is recommended.

2.8.2.1.11 Prefer “empty” Return Values over Null
If a method requires no semantic distinction between empty and null return values, return empty values. This saves client code from the hassle of performing null checks. For example, if you have a Data Access Object method that returns a List of objects based on some criteria, return an empty List when no objects are found. Document this behavior in the method JavaDoc as well.

[image: image72]
2.8.2.1.12 Prefer Interfaces to Concrete Types

When a class implements an interface, write your code to interact with that class via that interface instead of the class directly. By dealing with the interface, the underlying implementation can be changed without affecting your code.

[image: image73]
2.8.2.1.13 Use Inline Array Initialization Syntax

If you want to pre-populate an array with certain values, don’t initialize the array and populated it in multiple statements, e.g.

[image: image74]
Instead, combine the initialization and population when possible.

[image: image75]
In doing so, you avoid the possibility of mistyping the index values used to access the array or initializing the array to an improper length.

2.8.2.1.14 Use Parenthesis to Improve Readability

It is generally a good idea to use parentheses as liberally as needed in expressions involving mixed operators to avoid improve readability and avoid potential operator precedence problems. Even if the operator precedence seems clear to you, it might not be to others.
2.8.2.1.15 Specify Charset Encoding in byte to char Conversions

In order to properly read binary data into characters, you need to know how the binary data is encoded. When converting byte arrays into character arrays in Java, such as when generating a String from a byte array, explicitly specify the charset that they bytes are encoded in. Do not rely on the default JVM encoding.

[image: image76]
2.8.2.1.16 Properly Close Resources When No Longer Needed

Certain APIs, such as JDBC and Java IO, contain objects when must be closed after they’ve been used. In order to prevent resource leaks, take care to guarantee that these close operations are completed through use of finally blocks. Do not use finalize() methods for cleaning up such resources as these methods are invoked non-deterministically by the garbage collector. In the following JDBC example, note the use of the try/catch in the finally block to ensure that the finally block does not prematurely exit due to an SQLException thrown when closing the ResultSet instance.

[image: image77]
2.8.2.2 Anti-Patterns

2.8.2.2.1 If True, Return True, Else Return False

If you need to return either true or false from a method, and the return value depends on the evaluation of a boolean expression, just return the result of the boolean expression.

[image: image78]
2.8.2.2.2 The Constant Interface

Constants are defined in Java using static final variables; they cannot be reassigned to a different value (by virtue of the final qualifier) and are only loaded when the encapsulating class is loaded (by virtue of the static qualifier). The Constant Interface anti-pattern is when an interface is created solely for the purpose of defining constants. Although this is convenience since any class can access the constants by implementing the interface, this pattern is frowned upon since it places an implementation detail (the value of the constant) inside a mechanism designed to abstract implementation details. Furthermore, it can clutter the implementer’s namespace by including unused constants.

For the sake of increased cohesion, the preferred approach is to define constants within the classes that they pertain to. If such an approach is not feasible, create a final class with a private constructor to hold the constant declarations; import only the needed constants using static import statements, introduced in Java 5.

2.8.2.2.3 Mutable “Constants”

A static final variable is not necessarily a constant. The variable reference is constant but the referenced object must also be immutable to truly qualify the variable as a constant and thus be named according to the naming conventions. The mutable constant anti-pattern arises when a non-constant is named according to constant conventions, giving the false impression that the variable is constant.

[image: image79]
2.8.2.2.4 Static Initializer Blocks

Static initializer blocks have their purpose, but because they are restricted in nature (they are invoked solely when their encapsulated class is loaded by the ClassLoader); avoid them when possible.
To understand their restrictiveness, consider a DAO that looks up a javax.sql.DataSource via JNDI within a static initializer. If you want to test this DAO, a DataSource must be available through JNDI at the time the class is loaded. If the DAO instead took a DataSource instance via its constructor, you could avoid the need to involve JNDI at all during testing. This is an example of dependency injection—a class does not attempt to obtain dependencies (in this case, through JNDI) on its own, but instead requires that dependencies be provided to it through its constructor or setter methods.
2.8.2.2.5 Deeply Nested Blocks

A block is a self-contained static scope within enclosing curly braces, commonly used with control flow structures such as for, while, and if. A nested block is a block within another block (as contrasted with a block after another block). Blocks that are too deeply nested interfere with code understanding and is typically an indicator of poor design. Consider the method below, which suffers from deeply nested blocks:

[image: image80]
Deep nesting could be mitigated by returning early, effectively transitioning the nesting of blocks into a serialization of blocks. For example, the null and empty checks performed on the input list could be changed to serial blocks as follows:

[image: image81]
Refactoring the method into multiple methods may also help, as well as promote more reusability. The code for validating that a String contains only digit characters could be made into a utility method of another class; the code for converting a String to a BigInteger could also be converted into a utility method.
2.8.2.2.6 Single Point of Return

A misguided principle is that all methods must have a single return. Often, methods can be simplified if a return-as-early-as-possible approach is employed. For example, returning early potentially avoids deeply nested code blocks or eliminates the need to maintain a local variable for holding the return value. The best policy is to use the approach (single-return or return-as-early-as-possible) that yields the greatest readability.
2.8.3 References

· The CERT Sun Microsystems Secure Coding Standard for Java https://www.securecoding.cert.org/confluence/display/java/The+CERT+Sun+Microsystems+Secure+Coding+Standard+for+Java

2.9 Unit and Integration Testing
2.9.1 Overview
The primary purpose of testing is to discover and remove defects. Each defect has a cost. There is a cost to report defect, cost to fix defect and cost to distribute fix. The cost of each defect increases the further it appears in the development cycle and the greater the number of deployed copies. The goal is to shorten the path between defect discovery and defect removal.

2.9.1.1 Unit Testing

Unit testing is a software verification and validation method in which a programmer tests if individual units of source code are fit for use. A unit is the smallest testable part of an application. Unit tests are typically written and run by software developers to ensure that code meets its design and behaves as intended. Unit testing is considered to be a fundamental part of quality modern software development. The goal of unit testing is to isolate each part of the program and show that the individual parts are correct.

Unit testing reduces uncertainty in the units themselves and can be used in a bottom-up testing style approach. By testing the parts of a program first and then testing the sum of its parts, integration testing becomes much easier.

2.9.1.2 Integration Testing

Integration testing is when individual software modules are combined and tested as a group. It occurs after unit testing and before system testing. Integration testing takes as its input modules that have been unit tested, groups them in larger aggregates, applies tests defined in an integration test plan to those aggregates, and delivers as its output the integrated system ready for system testing.

There are three common integration testing approaches.
2.9.1.2.1 Top-Down Approach

The top-down approach to integration testing requires the highest-level modules be tested and integrated first. This allows high-level logic and data flow to be tested early in the process and it tends to minimize the need for drivers. However, the need for stubs complicates test management and low-level utilities are tested relatively late in the development cycle. Another disadvantage of top-down integration testing is its poor support for early release of limited functionality.
2.9.1.2.2 Bottom-up Approach

The bottom-up approach requires the lowest-level units be tested and integrated first. These units are frequently referred to as utility modules. By using this approach, utility modules are tested early in the development process and the need for stubs is minimized. The downside, however, is that the need for drivers complicates test management and high-level logic and data flow are tested late. Like the top-down approach, the bottom-up approach also provides poor support for early release of limited functionality.
2.9.1.2.3 Umbrella Approach
The third approach, sometimes referred to as the umbrella approach, requires testing along functional data and control-flow paths. First, the inputs for functions are integrated in the bottom-up pattern discussed above. The outputs for each function are then integrated in the top-down manner. The primary advantage of this approach is the degree of support for early release of limited functionality. It also helps minimize the need for stubs and drivers. The potential weaknesses of this approach are significant, however, in that it can be less systematic than the other two approaches, leading to the need for more regression testing.
2.9.2 Guidelines and Recommendations
2.9.2.1 Best Practices
2.9.2.1.1 Test Behavior Not Methods

Testing private methods cannot be done easily; you must embed the test within the method’s class itself, use reflection, or remove the private aspect of the method altogether. Ultimately, however, the problem lies less with method visibility and more with testing goals. Private methods typically implement a portion of a behavioral characteristic of a class—this behavior is what needs to be unit testing instead of these private methods.

For example, some classes perform initialization tasks within a private init() method. What occurs within the method, however, is less important than whether or not the class, as a whole, was properly initialized and is behaving consistently according to the input provided at initialization time.
Additionally, private methods are more prone to refactoring, making any corresponding test methods also prone to refactoring; behavior of a class, however, is typically more stable.
2.9.2.1.2 Test the Method Contract

The method contract is the JavaDoc documentation of the method’s behavior, including the following:
· Pre-conditions – what must be true about the object, and the method parameters, in order for the method to have a reasonable chance of proceeding. For example, a method that returns the value of the ith element of collection must be provided a value of i that is less than the size of the collection. If not, there is a pre-condition failure that results in a negative return.
· Post-conditions – what must be true about the object, return value and out parameters (mutable references), in the case where the method has succeeded. For example, a method that returns a globally unique file name should be tested by verifying that the file does not exist (if it does exist, the method failed to return a unique file name).

· Invariants – what must be true about the object for all time, both before and after a method call. The invariants are maintained by a method. For example, a class that maintains a LRU (least recently used) list of objects should be tested by accessing the LRU list, accessing an object on the LRU list, and accessing the LRU list again, to verify the object was removed from the LRU list.

2.9.2.1.3 Test Negative Behavior (Error Generation and Handling), Not Just Positive Behavior

If a method can throw an exception, provide a unit test that verifies that the exception is thrown (and only thrown) under the expected circumstances. Getting an exception when one is expected is an example of “passing” a “negative test.” In more general terms, negative behavior is the expected behavior of a method when pre-conditions are not appropriately met (e.g. a null value when a non-null value is required) or when post-conditions or invariants cannot be maintained because of external conditions (e.g. the SecurityManager is not permitting a method to perform certain operations). Negative behavior should be documented in the method contract.
2.9.2.1.4 Test the Edge Conditions/Cases
Edge conditions or edge cases occur when operating parameters are at extremes. For example, a method that extracts data from a JMS message payload would experience edge cases when the JMS payload is empty or when payload is as long as the maximum size supported by the underlying JMS implementation. A method that sorts items in the list would experience an edge condition when the data being sorted arrives in the pathologically worst ordering for the sorting algorithm (e.g., in the reverse of the intended ordering).

When practical, edge conditions must be stated as part of the method contract. This exposes the edge behavior explicitly to the users of the class/method and testing.
2.9.2.1.5 Provide Descriptive Test Method Names
Test method names are helpful for describing the purpose of the test. Descriptive names are more valuable than brief ones since they make it easier to identify the problem if a test were to fail. The following code snippet provides some examples on what constitutes a descriptive test method name.

[image: image82]
2.9.2.1.6 Mock Dependencies
Classes dependent upon certain dependencies like a Servlet session or a database connection are more easily tested when their dependencies are mocked with “fake” implementations that can be created without the need of a full-fledged Servlet container or database server. Mock dependencies are also useful for testing edge case behavior such as when a session is missing or has an unexpected value for a particular attribute, or when an invocation of getConnection() returns a mocked java.sql.Connection that will intermittently fail.
2.9.2.1.7 Mock Dependencies via Class Interfaces

The previous practice focuses on mock dependencies at a component or technology level, but mock dependencies can also be useful between any class dependencies to isolate a class and its tests. The mock objects are often the test data generators or test auditors, confirming the correct behavior within the core class. It is these “contracts” between the dependent classes that are often the most important to continuously verify as the code evolves.
2.9.2.1.8 Make Tests Repeatable

Well-written tests can be executed repeatedly and always yield the same results. Some unit tests require modifying an external dependency, such as writing a file to a file system, or inserting rows in a database. When writing such tests, ensure that the state of the external dependency is restored after the test executes to help ensure the test can be repeated. As an example, if you’re testing a behavior that results in the creation of the file, manually delete the file after the test completes so that the test could be repeated consistently.

Also, when possible, write tests in such a way that the exact state of the dependency does not determine the overall test’s success. For example, if you were testing a method that inserted a row into the database, you could run a row count query before and after the insertion and assert that the row count increased exactly by one. This test could then be run regardless of how many rows were present in the database table at the start of the test. If the test instead assumed that exactly three rows existed prior to the method and asserted that exactly four rows existed afterwards, the test would fail if the database did not meet the initial assumptions.
Well-written tests are repeatable within different environments. Avoid hard-coding external dependencies within tests such as file locations in order to keep tests repeatable.
2.9.2.1.9 Allow Testability to Influence Class Design
If a class is difficult to unit test, then it could be suffering from a poor design. For example, if a class invokes a certain piece of business logic after querying a database, you will need to mock a database connection that can provide a variety of results suitable for testing all of the logic’s boundary conditions. However, if you were to refactor the business logic into a separate class free from any database dependency, you could more easily unit test that logic. Taking testability into account can lead to better class design.
2.9.2.1.10 Use a Code Coverage Tool

It is often difficult to gauge how completely test cases are exercising a piece of code. Failing to fully test all execution paths could result in you missing a critical application bug that causes a system failure. Coverage utilities can easily be incorporated into your Ant or Maven build processes which will generate a visual coverage report showing you precisely which lines of code were tested.

2.9.2.2 Anti-Patterns

2.9.2.2.1 Catching RuntimeExceptions in Test Methods

If a RuntimeException occurs when code is unit tested, then it is likely it will occur again in production. Therefore, let your test methods throw RuntimeExceptions so that they will fail and alter you to a problem in your code.

2.9.2.2.2 Presuming Test Cases Will Execute in a Specific Order

A test that relies on the execution of a previous test will fail if the tests are executed out of order. This can cause misinformation in test results reports (two tests failed even though there was technically a single test failure), as well as make the testing less predictable since testing frameworks may not guarantee an consistent ordering of test execution.

2.9.2.2.3 Testing Getters and Setters

Writing unit tests for getters and setters is rarely useful. Apply the “too simple to break” rule when deciding which behaviors need to be tested.

2.9.2.2.4 Relying on Manual Visual Inspection of Test Output

The success or failure of a test must not be predicated on a developer “eyeballing” the console to determine the result; do not use System.out.println() or logger statements to determine your test’s success state. Instead, exclusively rely on JUnit’s various assertXXX() methods so the test can be run in an unattended, automated manner.

2.9.2.2.5 Writing Unit Tests with No Test Assertions

Each unit test must make an assertion about the expected results. When the actual results match the expected results, the assertions are true, resulting in a pass. In the cases where an assertion is false or there is an explicit call to fail(), the unit test results in a fail. Without any assertions, the unit test will consistently pass (unless there is some unhandled exception that exits the test case), defeating the purpose of unit testing.
2.9.2.3 Tools

JUnit (http://www.junit.org) is the de facto industry standard for unit testing in Java. The USPTO recommends JUnit for writing unit tests. There are also additional tools that supplement JUnit with code coverage assessment, mock object creation, etc. The following list highlights some of these:

· Selenium – http://seleniumhq.org/
· Easyb – http://easyb.org/
· DBUnit – http://www.dbunit.org/

· MockRunner – http://mockrunner.sourceforge.net/
· EasyMock – http://www.easymock.org/
· JMock – http://www.jmock.org/
· GroboUtils JUnit Extensions – http://groboutils.sourceforge.net/testing-junit/index.html

2.9.3 References

· List of unit testing frameworks http://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#Java

· Test Driven Development, Kent Beck (Addison-Wesley, ISBN0321146530) http://www.amazon.com/exec/obidos/ASIN/0321146530/javaworld
· Unit Testing in Java, Johannes Link (Morgan Kaufmann, ISBN1558608680)
http://www.amazon.com/exec/obidos/ASIN/1558608680/javaworld
· Test Driven Development: A Practical Guide, David Astels (Prentice Hall PTR, ISBN0131016490)
http://www.amazon.com/exec/obidos/ASIN/0131016490/javaworld
· EasyMock
http://www.easymock.org/index.html
/**

 * @param arg - a URL

 * @return a String

 * @throws MalformedURLException

 */

public String convert(URL url) throws MalformedURLException {

	// conversion stuff done here...

}

class MyClass implements SomeInterface, SomeOtherInterface {

	

	AnonClass anon = new AnonClass() {

	};

	

	static class StaticInner {

	}

}

interface MyInterface extends SomeInterface {

}

@interface MyAnnotation {

}

import java.io.InputStream;

import java.util.*;

import javax.xml.parsers.*;

import org.w3c.dom.*;

public class InefficientParser {

	/* BAD: Nodes hold references to their owner Documents,

	 * thus this List ultimately requires that every parsed

	 * XML document be held in memory. */

	private static List<Node> nodes = new ArrayList<Node>();

	/** Extracts values regardless of their namespace. */

	public synchronized static void parseInput(InputStream xmlStream)

			throws Exception {

		DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

		Document doc = factory.newDocumentBuilder().parse(xmlStream);

		NodeList children = doc.getDocumentElement().getChildNodes();

		for (int i = 0; i < children.getLength(); ++i) {

			Node child = children.item(i);

			if ("value".equals(child.getLocalName())) {

				nodes.add(child);

			}

		}

	}

	/** Returns all known values in the given namespace. */

	public static synchronized List<String> getFoos(String namespace) {

		List<String> values = new ArrayList<String>(nodes.size());

		for (Node node : nodes) {

			if (namespace.equals(node.getNamespaceURI())) {

				values.add(node.getNodeValue());

			}

		}

		return values;

	}

}

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

import java.util.concurrent.atomic.AtomicBoolean;

import javax.swing.JButton;

public class FirstClickTextUpdater implements MouseListener {

	private static final AtomicBoolean buttonClicked =

new AtomicBoolean(false);

	/**

	 * Appends "again" to the button text after it is clicked

	 * for the first time.

	 */

	@Override

	public void mouseClicked(MouseEvent e) {

		if (!buttonClicked.getAndSet(true)) {

			JButton b = (JButton)e.getComponent();

			b.setText(b.getText() + " again");

			b.removeMouseListener(this);

		}

	}

	@Override public void mousePressed(MouseEvent e) {}

	@Override public void mouseEntered(MouseEvent e) {}

	@Override public void mouseExited(MouseEvent e) {}

	@Override public void mouseReleased(MouseEvent e) {}

}

import java.io.*;

public class FileCopier {

	/* BAD: unnecessary use of memory AND fails to handle

	 * files over 2GB in size. */

	private final byte[] fileData;

	public FileCopier(File file) throws IOException {

		ByteArrayOutputStream baos = new ByteArrayOutputStream();

		FileInputStream fin = new FileInputStream(file);

		try {

			int aByte = 0;

			while ((aByte = fin.read()) != -1) {

				baos.write(aByte);

			}

			fileData = baos.toByteArray();

		} finally {

			fin.close();

			baos.close();

		}

	}

	public File generateCopy() throws IOException {

		File copy = File.createTempFile("foo", "bar");

		FileOutputStream fout = new FileOutputStream(copy);

		ByteArrayInputStream bin =

new ByteArrayInputStream(fileData);

		try {

			int aByte = 0;

			while ((aByte = bin.read()) != -1) {

				fout.write(aByte);

			}

		} finally {

			bin.close();

			fout.close();

		}

		return copy;

	}

}

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

import java.util.concurrent.atomic.AtomicBoolean;

import javax.swing.JButton;

public class FirstClickTextUpdater implements MouseListener {

	private static final AtomicBoolean buttonClicked =

new AtomicBoolean(false);

	public FirstClickTextUpdater(JButton button) {

		button.addMouseListener(this);

	}

	/**

	 * Appends "again" to the button text after it is clicked

	 * for the first time.

	 */

	@Override

	public void mouseClicked(MouseEvent e) {

		if (!buttonClicked.getAndSet(true)) {

			JButton b = (JButton)e.getComponent();

			b.setText(b.getText() + " Again");

			/* BAD: fails to remove itself as a listener. */

		}

	}

	@Override public void mousePressed(MouseEvent e) {}

	@Override public void mouseEntered(MouseEvent e) {}

	@Override public void mouseExited(MouseEvent e) {}

	@Override public void mouseReleased(MouseEvent e) {}

}

import java.util.*;

public class Finalizers {

	static List<Object> stuff = new ArrayList<Object>();

	/* BAD: Refuses to be garbaged collected by creating a

 * strong reference to itself upon finalization.*/

	public static class Resurrector {

		@Override public void finalize() {

			stuff.add(this);

		}

	}

	/* BAD: Exception prevents memory from getting reclaimed */

	public static class Thrower {

		@Override public void finalize() {

			throw new NullPointerException("Haha!");

		}

	}

	/* BAD: no guarantee that the finalize method will be called prior

 * to the JVM shutting down; better to return the connection to the

 * pool when you're done with it. */

	public abstract static class Cleanup {

		@Override public void finalize() {

			returnConnectionToPool();

		}

		protected abstract void returnConnectionToPool();

	}

}

synchronized (nonNullObjectReference) { /* synchronized code */ }

/*

 * Both methods have the same synchronization semantics.

 */

public class SynchronizationKeyword {

	public void someMethod() {

		synchronized (this) {

			// do something

		}

	}

	public synchronized void someOtherMethod() {

		// do something else

	}

}

public class VolatileLoop {

	private volatile boolean active = true;

	/* one thread could be executing this method... */

	public void doStuffWhileActive() {

		while (active) { /* do stuff */ }

	}

	/* ...when another thread attempts to stop its execution */

	public void deactivate() {

		active = false;

	}

}

import java.util.concurrent.atomic.AtomicBoolean;

public class BetterLoop {

	private AtomicBoolean active = new AtomicBoolean(true);

	/* one thread could be executing this method... */

	public void doStuffWhileActive() {

		while (active.get()) { /* do stuff */}

	}

	/* ...when another thread attempts to stop its execution */

	public void deactivate() {

		active.set(false);

	}

}

public class Mutable {

	private String field;

	public int globalField;

	public String getField() {

		return field;

	}

	public void setField(String field) {

		this.field = field;

	}

}

public class Immutable {

	private final String field = "I'm immutable";

	public final int globalField;

	

	public Immutable(int globalField) {

		this.globalField = globalField;

	}

	public String getField() {

		return field;

	}

}

import java.util.*;

public class ImmutableCollections {

	private final List<String> coreValues = new ArrayList();

		

	public List<String> getValues() {

		List<String> fooValues =

new ArrayList<String>(coreValues);

		fooValues.addAll(getExtraValues());

		/* make the values collection unmodifiable */

		return Collections.unmodifiableList(fooValues);

	}

	

	List<String> getExtraValues() {

		// returns extra values

	}

}

public class SyncWhenNecessary {

	private int port = 3306;

	public void setPort(int port) {

		/* no need to synchronize on port

		 * until we've validated our input */

		if (port == 80 || port == 25) {

			throw new IllegalArgumentException(

					"Cannot use a reserved port.");

		}

		synchronized (this) {

			this.port = port;

		}

	}

}

public class SyncStaticField {

	private static String dbHost = "localhost";

	public static void setHost(String host) {

		synchronized (SyncStaticField.class) {

			dbHost = host;

		}

	}

	/*

	 * using method keyword same as synchronizing explicitly on

	 * SyncStaticField.class

	 */

	public synchronized static String getHost() {

		return dbHost;

	}

}

/*

 * By using two lock objects, Threads are able to access the String

 * instance variable without having to wait for threads accessing

 * the URI instance variable and vice versa.

 */

public class MultipleFieldsWithDedicatedLocks {

	private String str;

	private URI uri;

	private final Object strLock = new Object(),

			uriLock = new Object();

	public void setStr(String str) {

		synchronized (strLock) {

			this.str = str;

		}

	}

	public String getStr() {

		synchronized (strLock) {

			return this.str;

		}

	}

	public URI getUri() {

		synchronized (uriLock) {

			return uri;

		}

	}

	public void setUri(URI uri) {

		synchronized (uriLock) {

			this.uri = uri;

		}

	}

}

public class LazySingleton {

	private LazySingleton() { }

	

	private static class LazySingletonHolder {

		private static final LazySingleton singleton =

				new LazySingleton();

	}

	

	public static LazySingleton getInstance() {

		return LazySingletonHolder.singleton;

	}

}

public class InconsistentSynchronization {

	private final Map<String, String> data = new HashMap();

	public void put(String key, String value) {

		synchronized (data) {

			data.put(key, value);

		}

	}

	/* WRONG: fails to synch on read */

	public String get(String key) {

		return data.get(key);

	}

}

public class WrongLocks {

	/* WRONG: the lock could be interned */

	private final String lock1 = "LOCK";

	

	/* WRONG: the lock is exposed to outside threads */

	public final Object lock2 = new Object();

	

	/* WRONG: the lock is not final */

	private Object lock3 = new Object();

	

	private static Integer criticalStaticCounter = 0;

	

	/* WRONG: getClass() return value will vary if WrongLocks

	 * is subclassed */

	public void increment1() {

		synchronized (getClass()) {

			++criticalStaticCounter;

		}

	}

	

	/* WRONG: when multiple instances of WrongLocks exist,

	 * multiple threads could execute critical section

	 * simultaneously */

	public void increment2() {

		synchronized (this) {

			++criticalStaticCounter;

		}

	}

	

	/* WRONG: the lock reference will get changed within the

	 * critical section */

	public void increment3() {

		synchronized (criticalStaticCounter) {

			++criticalStaticCounter;

		}

	}

}

public class SingleCheckedLocking {

	private volatile static SingleCheckedLocking singleton;

	

	private SingleCheckedLocking() { }

	

	public static SingleCheckedLocking getInstance() {

		/* read isn't synchronized, even though singleton is

 * volatile, the constructor could be in the process of

 * executing when another thread enters method, at

 * which point the singleton reference is still null */

		if (singleton == null) {

			synchronized (SingleCheckedLocking.class) {

				singleton = new SingleCheckedLocking();

			}

		}

		return singleton;

	}

}

/* only works in Java 5 and up, but not preferred approach */

public class DoubleCheckedLocking {

	private static volatile DoubleCheckedLocking singleton;

	public static DoubleCheckedLocking getInstance() {

		if (singleton == null) {

			synchronized (DoubleCheckedLocking.class) {

				if (singleton == null)

					singleton =

new DoubleCheckedLocking();

			}

		}

		return singleton;

	}

}

import java.awt.event.KeyEvent;

import java.awt.event.KeyListener;

import javax.swing.JButton;

public class ExplicitlyLeakyConstructor implements KeyListener {

	public static ExplicitlyLeakyConstructor instance;

	/* Leaks via publicly available static variable */

	public ExplicitlyLeakyConstructor() {

		instance = this;

		init();

	}

	

	/* Leaks to JButton */

	public ExplicitlyLeakyConstructor(JButton b) {

		b.addKeyListener(this);

		init();

	}

	

	/* Leaks to sublcasses extending initWithConfig method */

	public ExplicitlyLeakyConstructor(String config) {

		initWithConfig(config);

	}

	

	private void init() { /* does lots of stuff */ }

	void initWithConfig(String config) {

		/* does lots of stuff. NOTE: can be overridden */

	}

	/* these methods could be called before

 * initialization completes */

	@Override

	public void keyPressed(KeyEvent e) {/* does stuff */}

	@Override

	public void keyReleased(KeyEvent e) {/* does stuff */}

	@Override

	public void keyTyped(KeyEvent e) {/* does stuff */}

}

public class ImplicitlyLeakyConstructor {

	private class Inner {

		Inner() { doSomething(); }

	}

	

	/* Leaks to Thread started in constructor */

	public ImplicitlyLeakyConstructor() {

		new Thread() {

			@Override

			public void run() {

				doSomething();

			}

		}.start();

		init();

	}

	

	/* Leaks to non-static inner class */

	public ImplicitlyLeakyConstructor(Object arg) {

		new Inner();

		init();

	}

	

	private void init() { /* do lots of stuff */ }

	/* method could be called before init completes */

	void doSomething() { /* does something */ }

}

import java.text.ParseException;

import java.text.SimpleDateFormat;

import java.util.Date;

public class UnsafeDateParser {

	private static final SimpleDateFormat fmt

= new SimpleDateFormat("MM-dd-yyyy");

	public Date parse(String dateStr) throws ParseException {

		return dateStr == null ? null : fmt.parse(dateStr);

	}

}

public class NotSoAtomicCounter {

	private volatile int count;

	/* WRONG: the ++ operator is not atomic */

	public int next() {

		return count++;

	}

}

public class NotSoAtomic64BitPrimitives {

	/* WRONG: needs to be volatile */

	private long id;

	

	public void setId(long id) {

		this.id = id;

	}

}

void authenticate(String user, String pass) throws SQLException {

	// obtain datasource and connection

	String sql = "select * from db_user where username = '" + user

			+ "' and password = '" + pass + "'";

	Statement stmt = connection.createStatement();

	ResultSet rs = stmt.executeQuery(sql);

	if (!rs.next()) {

		throw new SecurityException("Login incorrect");

	}

}

void authenticate(String user, String pass) throws SQLException {

	// obtain datasource and connection

	String sql =

"select * from db_user where username = ? and password = ?";

	PreparedStatement stmt = connection.prepareStatement(sql);

	stmt.setString(1, user);

	stmt.setString(2, pass);

	ResultSet rs = stmt.executeQuery(sql);

	if (!rs.next()) {

			throw new SecurityException("Login incorrect");

	}

}

public void writeList() throws IOException,

					 ArrayIndexOutOfBoundsException

public void writeList() throws IOException

public void guardedLogging() {

	Object o = new Object() {

		/* An expensive toString implementation */

		@Override

		public String toString() {

			SimpleDateFormat fmt =

new SimpleDateFormat("MM/dd/yyyy kk:mm:ss");

			String[] s = new String[] {

"one", "two", "three", "four" };

			return StringUtils.join(s, fmt.format(new Date()));

		}

	};

	if (log.isDebugEnabled()) { // guard

		log.debug("This message " + " string "

				+ "must be generated completely "

				+ "before the logger can decided "

				+ "whether or not it needs "

				+ "to log the message: " + o);

	}

}

public List<Widget> getWidgets() throws WidgetException;

public List<Widget> getWidgets() throws FileNotFoundException;

private static final transient Logger log = Logger

			.getLogger(MyClass.class);

import java.io.*;

import org.apache.log4j.Logger;

public class Cleanup {

	private static final Logger log =

Logger.getLogger(Cleanup.class);

	public byte readFirstByte(File file) throws IOException {

		FileInputStream fin = null;

		try {

			fin = new FileInputStream(file);

			return (byte) fin.read();

		} finally {

			if (fin != null) {

				try {

					fin.close();

				} catch (IOException e) {

					log.warn("Failed to close stream for "

							+ file, e);

				}

			}

		}

	}

}

try {

	// do something

} catch (FileNotFoundException e) {

	log.error("Couldn't find file.", e);

	throw new IllegalArgumentException(e);

} catch (WriteAbortedException e) {

	log.error("Error writing file.", e);

	throw e;

}

/* This method will return 0 */

public static int returnsZero() {

	try {

		return 1;

	} finally {

		return 0;

	}

}

/* This method does not throw an exception */

public static void doesNotThrowException() {

	try {

		throw new RuntimeException("Swallowed by " +

				"the return from within the finally");

	} finally {

		return;

	}

}

	

/* This method creates an infinite loop. */

public static void inifinteLoop() {

	while (true) {

		try {

			return;

		} finally {

			continue;

		}

	}

}

try {

	

} catch (FileNotFoundException e) {

	// Intentionally empty; ignore and process the next file.

}

try {

	// do something

} catch (UnsupportedEncodingException e) {}

public Iterator<String> readLines(File input) {

	try {

		// do something

	} catch (IOException e) {

		log.error(e);

		return null;

	}

}

try {

	// do something

} catch (UnsupportedEncodingException e) {

	throw new IOException("I/O problems");

}

try {

	// do something

} catch (Error e) {

	log.error("ERROR!", e);

}

try {

	// do something

} catch (Throwable t) {

	log.error("ERROR!", t);

}

public abstract void write(File f) throws FileNotFoundException,

InterruptedIOException,

EOFException,

UnsupportedEncodingException,

			WriteAbortedException;

log.debug("Beginning validation process.");

log.debug("Checking max length.");

try {

	// do something

} catch (Exception e) {

	if (e.getCause() instanceof IOException) {

		// handle

	}

}

public java.util.Collection<java.util.Date> getFederalHolidays() {

	java.util.List<java.util.Date> holidays =

new java.util.ArrayList<java.util.Date>();

	// find the dates...

	return holidays;

}

public class Statics {

	static int greetings = 3;

	static void greet() {

		System.out.println("Hello!");

	}

	

	static class Substatics extends Statics {

		static int greetings = 1;

		static void greet() {

			System.out.println("Hi!");

		}

	}

	public static void main(String[] args) {

		Statics s = null;

		Statics ss = new Substatics();

		for (int i = 0; i < ss.greetings; ++i) {

			s.greet();

			ss.greet();

		}

	}

}

void inefficientStringBuilding() {

	String s = "this";

	s += "is";

	s += "an";

	s += "expensive";

	s += "way";

	s += "to";

	s += "construct";

	s += "a String";

		

	String s2 = "";

	for (int i = 0; i < 10; ++i) {

		// each loop must create a copy of s2

		s2 += i;

	}

}

void efficientStringBuilding() {

	String s = "this"

		+ "approach "

		+ "is"

		+ "better"

		+ "since"

		+ "it"

		+ "avoids"

		+ "creating multiple copies";

		

	StringBuilder b = new StringBuilder();

	for (int i = 0; i < 10; ++i) {

		b.append(i);

	}

	String s2 = b.toString();

}

void inefficientStringBuilding() {

 String s = "this";

 s = (new StringBuilder(String.valueOf(s))).append("is").toString();

 s = (new StringBuilder(String.valueOf(s))).append("an").toString();

 s = (new StringBuilder(String.valueOf(s))).append("expensive").toString();

 s = (new StringBuilder(String.valueOf(s))).append("way").toString();

 s = (new StringBuilder(String.valueOf(s))).append("to").toString();

 s = (new StringBuilder(String.valueOf(s))).append("construct").toString();

 s = (new StringBuilder(String.valueOf(s))).append("a String").toString();

 String s2 = "";

 for(int i = 0; i < 10; i++) {

 s2 = (new StringBuilder(String.valueOf(s2))).append(i).toString();

 }

 }

void efficientStringBuilding() {

 String s = "thisapproach isbettersinceitavoidscreating mulitple copies";

 StringBuilder b = new StringBuilder();

 for(int i = 0; i < 10; i++) {

 b.append(i);

 }

 String s2 = b.toString();

}

public class InvalidDataSource implements javax.sql.DataSource {

	/**

	 * @throws SQLException always

	 */

	private <T> T throwSQLException() throws SQLException {

		throw new SQLException("DataSource is invalid.");

	}

	public Connection getConnection() throws SQLException {

		return throwSQLException();

	}

	public Connection getConnection(String user, String pass)

			throws SQLException {

		return throwSQLException();

	}

	public PrintWriter getLogWriter() throws SQLException {

		return throwSQLException();

	}

	public int getLoginTimeout() throws SQLException {

		return throwSQLException();

	}

	public void setLogWriter(PrintWriter out) throws SQLException {

		throwSQLException();

	}

	public void setLoginTimeout(int seconds) throws SQLException {

		throwSQLException();

	}

	public boolean isWrapperFor(Class<?> c) throws SQLException {

		return throwSQLException();

	}

	public <T> T unwrap(Class<T> c) throws SQLException {

		return throwSQLException();

	}

}

/**

 * Returns a list of results matching the given criteria

 *

 * @param criteria

 * @return an empty list if no results match

 */

public List<Result> query(String criteria) {

	// ...run the query; if no results found...

	return Collections.emptyList();

}

private javax.naming.InitialContext badVariableType;

private javax.naming.Context goodVariableType;

	

public java.util.ArrayList badReturnValue();

public java.util.List goodReturnValue();

	

public void badArgs(java.util.TreeSet args);

public void goodArgs(java.util.SortedSet args);

String[] vals = new String[3];

vals[0] = "foo";

vals[1] = "bar";

vals[2] = "baz";

someMethod(vals);

someMethod(new String[] { "foo", "bar", "baz" });

String charData = new String(byteData, "ISO-8859-1");

/* AVOID: Overly explicit; requires local variable */

public boolean startsWithJEndsWithK(String str) {

	boolean retVal = false;

	if (str != null && str.startsWith("j") && str.endsWith("k")) {

		retVal = true;

	} else {

		retVal = false;

	}

	return retVal;

}

/* AVOID: Slighly better, but unnecessarily explicit */

public boolean startsWithJEndsWithK(String str) {

	if (str != null && str.startsWith("j") && str.endsWith("k")) {

		return true;

	} else {

		return false;

	}

}

	

/* PREFERED WAY */

public boolean startsWithJEndsWithK(String str) {

	return str != null && str.startsWith("j") && str.endsWith("k");

}

/*

 * OK: Primitives and certain types are immutable and can be named

 * Using constant conventions provided their references are static

 * and final

 */

static final boolean BOOLEAN = true;

static final byte BYTE = 7;

static final char CHAR = 'c';

static final int INT = 11;

static final long LONG = 11L;

static final float FLOAT = 11.0f;

static final double DOUBLE = 11.0d;

static final String STRING = "Strings are immutable";

static final URI A_URI = URI.create("http://uris.are/too");

static final QName QNAME = new QName("http://qnames", "constant");

static final BigInteger BIG_INTGER = BigInteger.TEN;

static final BigDecimal BIG_DECIMAL = BigDecimal.TEN;

static final List<String> IMMUTABLE_LIST =

Collections.unmodifiableList(

Arrays.asList(new String[] { "constant", "list" }));

static final Pattern PATTERN = Pattern.compile("^constant");

	

/*

 * WRONG: the following types can be mutated and therefore should not

 * be named using constant naming conventions

 */

static final SimpleDateFormat FORMATTER =

new SimpleDateFormat("MM/dd/yyyy");

static final Date NOW = new Date();

static final int[] VALUES = { 0, 1, 2, 3, 4 };

static final String[] STR_VALUES = { "not", "a", "constant" };

static final Logger LOG = Logger.getLogger(Constants.class);

static final List<String> MUTABLE_LIST =

Arrays.asList(new String[] {"mutable", "list" });

static final File FILE = new File("/not/a.constant");

Statement stmt = null;

ResultSet rs = null;

Connection conn = getConnection();

try {

	stmt = conn.createStatement();

	rs = stmt.executeQuery(query);

	// process results

} catch (SQLException e) {

	// handle

} finally {

	try {

		if (rs != null) {

			rs.close();

		}

} catch (SQLException e) {

		// ignore

	} finally {

		try {

			if (stmt != null) {

				stmt.close();

			}

} catch (SQLException e) {

			// ignore

		} finally {

			conn.close();

		}

	}

}

/* Poorly named test methods for authorize behavior */

public void testAuthorize1()

public void testAuthorize2()

public void testAuthorize3()

	

/* Well-named test methods for authorize behavior */

public void testAuthroizeEmptyUsername()

public void testAuthroizeEmptyPassword()

public void testAuthroizeIncorrectCredentials()

/* AVOID */

int a = 3, b = 6, c = a++, d = b + c;

/* Better */

int a = 3;

int b = 6;

a++; // ++ performs an assignment

int c = a;

int d = b + c;

/* AVOID */

if (c == (d -= 3))

assert ++d == 2;

		

int extIdx;

if ((extIdx = fileName.lastIndexOf(".txt")) >= 0)

		

		

public class ExceptionsAsControlFlow {

	static class InputIsEmpty extends Exception {}	

static class InputContainsAllNumbers extends Exception {}

	static class InputContainsNoNumbers extends Exception {}

	private static int DEFAULT_MAGIC = 7;

	

	/** Computes the magic value of the String array */

	public int computeMagicValue(String[] data) {

		int magicValue = 0;

		try {

			if (data == null || data.length == 0) {

				throw new InputIsEmpty();

			}

			// count the number of array elements that are

			// String representations of integers

			int nbrOfNumbers = 0;

			for (String datum : data) {

				if (datum.matches("\\d+")) ++nbrOfNumbers;

			}

			

			if (nbrOfNumbers == 0) {

				throw new InputContainsNoNumbers();

			} else if (nbrOfNumbers == data.length) {

				throw new InputContainsAllNumbers();

			}

			

			magicValue = DEFAULT_MAGIC + data.length

- nbrOfNumbers;

		} catch (InputIsEmpty e) {

			magicValue = DEFAULT_MAGIC;

		} catch (InputContainsAllNumbers e) {

			for (String datum : data) {

				magicValue += Integer.valueOf(datum);

			}

		} catch (InputContainsNoNumbers e) {

			for (String datum : data) {

				magicValue += datum.length();

			}

		}

		return magicValue;

	}

}

import java.lang.*;

public class UnnecessarilyExplicit extends Object {

	

	public UnnecessarilyExplicit() {}

	

	public void foo() {

		this.bar();

	}

	

	private void bar() {}

}

public abstract void foo() throws Exception;

/*

 * AVOID! Suffers from deep nesting. Could be refactored to avoid

 * deep nesting. For example, the null and empty checks could return

 * early, the code for checking that the String represents an Integer

 * can be moved into a separate method, as could the code responsible

 * for producing the square of the Integer values.

 */

public List<Integer> squareList(List<Object> input) {

	if (input != null) {

		if (!input.isEmpty()) {

			List<Integer> output =

new ArrayList<Integer>(input.size());

			for (Object o : input) {

				if (o instanceof String) {

					String s = (String) o;

					boolean isAllDigits = true;

					for (int i = 0; i < s.length(); ++i) {

						char c = s.charAt(i);

						if (!Character.isDigit(c)) {

							isAllDigits = false;

							break;

						}

					}

					if (isAllDigits) {

						BigInteger b = new BigInteger(s);

						output.add(b.pow(2).intValue());

					} else {

						output.add(-1);

					}

				} else if (o instanceof Integer) {

					BigInteger b = new BigInteger(

Integer.toString(

(Integer) o));

					output.add(b.pow(2).intValue());

				} else {

					throw new IllegalArgumentException(

					"Unsupported input list element type "

					+ o.getClass());

				}

			}

			return output;

		} else {

			return Collections.emptyList();

		}

	} else {

		return null;

	}

}

public List<Integer> squareList(List<Object> input) {

	if (input == null) {

		return null;

	} else if (input.isEmpty()) {

		return Collections.emptyList();

	}

	// rest of method goes here...

}

public class CollectionFieldAccess {

	/*

	 * the final keyword only means that we cannot change

 * the reference, but we are free to change the contents of

 * the list through the java.util.List mutator methods

	 */

	private final List<String> synchList = Collections

			.synchronizedList(new ArrayList<String>());

	

	private final List<String> list = new ArrayList<String>();

	public void addSynch(String s) {

		synchList.add(s);

	}

	

	public void add(String s) {

		synchronized (list) {

			list.add(s);

		}

	}

}

/*

 * Created on Feb 17, 2009.

 *

 * License and/or copyright information...

 */

package gov.uspto.examples;

import java.io.InputStream;

import java.net.URI;

import java.util.ArrayList;

import java.util.List;

import java.util.concurrent.atomic.AtomicBoolean;

import javax.xml.namespace.QName;

import javax.xml.parsers.DocumentBuilder;

import org.apache.commons.lang.StringUtils;

import org.apache.log4j.Logger;

import org.w3c.dom.Document;

import org.w3c.dom.Node;

/*

 * Wrapped lines are all double-indented

 */

class WrappingExamples {

int[] wrapAfterComma = { 1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12 };

int wrapBeforeOperator1(boolean argument) {

return argument ? 100000

: 200000;

}

int wrapBeforeOperator2() {

		int sum = 100 + 200 + 300 + 400

+ 500 + 600 + 700 + 800;

		int product = 1 * 2 * 3 * 4 * 5

* 6 * 7 * 8 * 9 * 10;

		boolean val = true && false

				&& true && false

				&& true;

		return product / sum;

}

SomeClass wrapAfterComma1() {

return new SomeClass(100, 200,

300, 400, 500, 600,

700, 800, 900);

}

int wrapAfterComma2() throws FirstException,

SecondException,

ThirdException {

return Other.doSomething();

}

}

@GET

@Path("/object")

@Produces("text/html")

public Object getObjectHtml(@PathParam("id") String id) {

int myInt = 0;

String myStr = "hello";

MyClass() throws Exception1, Exception2 {

	this(0, 0, 0);

}

MyClass(int x, int y, int z) throws Exception1 {

	super(x, y, z, true);

}

void foo() throws Exception1, Exception2 {

}

void bar(int x, int y) throws Exception1 {

}

	

void format(String s, Object... varargs) {

}

@MyAnnotation

@AnotherAnnotation(foo = "Hello", bar = 23)

public class MyClass {

	@FieldAnnotation

	private int field = 3;

	@MethodAnnotation

	void foo(@PrmAn1(1) String a1, @PrmAn2("name") String a2) {

		

		@LocalAnno

		String cat;

	}

enum BasicEnum {

	ONE, TWO, THREE, FOUR, FIVE

}

enum ComplexEnum {

	GREEN(0, 1), RED() {

		void process() {

		}

	}

if (condition) {

return foo;

}

if (condition) {

return foo;

} else if (condition2) {

return bar;

} else {

return bar;

}

for (int i = 0, j = array.length; i < array.length; i++, j--) {

}

for (Iterator it = list.iterator(); it.hasNext();) {

}

for (String s : names) {

}

switch (number) {

case RED:

return GREEN;

case GREEN:

return BLUE;

case BLUE:

return RED;

default:

return BLACK;

}

while (condition) {

}

do {

} while (condition);

synchronized (list) {

list.add(element);

}

try {

number = Integer.parseInt(value);

} catch (NumberFormatException e) {

}

try {

stream = new FileInputStream(file);

} catch (IOException e) {

} finally {

	Stream.close();

}

assert condition : reportError();

return (o);

throw (e);

Object obj = new Object();

Point point = new Point(x, y);

List list = new ArrayList();

int a = -4 + -9;

c += 4;

boolean value = true && false;

result = (a * (b + c + d) * (e + f));

String s = ((String) object);

String value = condition ? TRUE : FALSE;

int[] array0 = new int[] {};

int[] array1 = new int[] { 1, 2, 3 };

int[] array2 = new int[3];

array[i].foo();

List<Element> list = new ArrayList<Element>();

Map<String, Element> map = new HashMap<String, Element>();

x.<String, Element> foo();

class MyGenericType<S, T extends Element & List> {

}

public <T, S> T doSomething(S something) {

}

static <T extends List<T>> T extract(List<T> list, int index) {

}

Map<X<?>, Y<? extends K, ? super V>> t;

foo();

bar(1, 3);

StringUtils.join(new String[] { "one", "two", "three" });

super.toString();

obj.notify();

� DOM implementations may not necessarily implement the Node.getOwnerDocument() using an in-memory Document reference; it could attempt to recreate the Document instance lazily. Also, the method is classified as a DOM Level 2, so certain DOM implementations may choose to not even implement this method. To avoid potential problems in the event that the underlying DOM implementation is changed, InefficientParser.java should be re-written, regardless.

PAGE
3

_1249718232.bin

