[image: image4.png]

Software CM Standards and Guidelines
Version 0.95
March 14, 2010
Prepared for:

United States Patent and Trademark Office

Office of Chief Information Officer

Record of Changes/Version History
	Change/Version Number
	Date of Change
	Sections Changed
	Description
	Person Entering Change

	
	
	
	
	

Table of Contents

11
introduction

11.1
Purpose

11.2
Scope

11.3
Exceptions

22
Mandatory CM and Release Management Standards

22.1
CM Management and Build Tools

22.1.1
Code Repository

22.1.2
Daily Check In

22.1.3
Check In Identification

22.1.4
Activities and Comments

32.1.5
Code Merge

32.1.6
Build Automation

32.1.7
Integration Builds

32.1.8
Build Testing

32.1.9
CM Builds

42.2
Tree Management

42.2.1
Layout

42.2.2
Version Tags/Labels

42.3
Release Management

42.3.1
Code Freeze

42.3.2
Code Release

1 introduction
1.1 Purpose

The purpose of this coding standard is to provide guidance to the United States Patent and Trademark Office (USPTO) application-development teams that use technologies addressed by this standard. By following this standard, teams will produce application code that is consistent, readable, maintainable, and, to the extent possible, compliant with industry best practices and conventions.

1.2 Scope

All USPTO application development teams using technologies addressed by this standard must follow this standard, whether the developers are USPTO employees or not, and regardless of where the application is developed or where it will be hosted.

Any deviation from this Policy requires approval from the USPTO.
1.3 Exceptions

Exceptions to this standard must be approved in advance, in writing, by the USPTO.
2 Mandatory CM and Release Management Standards

This document contains required practices that will be enforced through the System Development Lifecycle (SDLC) processes. The purpose of these standards is to improve application performance, security, and maintainability of software developed by or for the United States Patent and Trademark Office (USPTO).
2.1 CM Management and Build Tools
All development is required to use USPTO provided Configuration Management tools and rules. All software developed belongs to USPTO and USPTO may request immediate check in of any development at any time.

The Rational Suite of software products is the toolset required.
2.1.1 Code Repository
All code shall be checked into the CM repository maintained by the USPTO. Projects shall use the development and integration streams during the development cycle.
2.1.2 Daily Check In
All files created, updated and/or required for development shall be checked into the USPTO CM repository daily to minimize the potential loss of work. This includes but is not limited to source files, build files, unit test related files, configuration files, integration files, release notes, related documentation, and scripts. These files shall not be stored in the desktop, local repository, external drives. Exceptions to this policy may occur if software changes require more than one day to complete and compile. In that case, software being updated may be stored on the local machine until updates are complete. USPTO must be notified if this exception exceeds 3 days.

2.1.3 Check In Identification
All check in’s of any file during the project cycle shall be performed by the responsible developer.
2.1.4 Activities and Comments
All code checked in shall be associated with a relevant activity or comment. If a bug was fixed with the check in, the comment or activity should reference the bug number from the bug tracking tool.
2.1.5 Code Merge

If a check in needs to be merged with an existing file, the developer performing the merge shall verify that the changes were properly merged in the resulting file.
2.1.6 Build Automation
All builds shall be integrated into the CM build automation. All software deliveries shall provide a “command-line” driven build for this purpose. Scripts shall be delivered with the build that integrate both the unit tests and code quality check tools. The automated software builds intended for delivery to a test group shall pass unit test and code quality checks that are acceptable to USPTO. An existing baseline in production may be run against the quality checks and be used for comparison.
2.1.7 Integration Builds

The integration stream must build consistently without errors or warnings. Integration builds must pass unit and smoke tests without errors. Once the integration build has been cleared for release, the build is promoted to the test build area.
2.1.8 Build Testing
Prior to formal release of software to USPTO, all code shall be checked into the USPTO CM repository. Software shall be tagged with appropriate release information as dictated by USPTO. The following steps shall be performed when preparing to release code:

· Check in all code into CM,
· Tag code designated for release,
· Clean all source code from build or development PC (or create a fresh new virtual machine),
· Checkout all release code by specified tag, and
· Build software and perform testing.
This method assures that the USPTO is able to recreate all builds for every release exclusively from code checked into CM. This also validates that required software is not left on local computers and is checked into CM.
2.1.9 CM Builds

All formal builds shall be done only from the USPTO repository by the USPTO CM team or CM designated tool. These will be based on the integration stream that has been “released” by the development lead to FTD. This delivery must build successfully for the CM team and have passed all unit test cases.
2.2 Tree Management
2.2.1 Layout

USPTO, at its discretion, may require a specific layout of a repository in the USPTO CM repository. Such requirements shall be provided at the start of a project and all development shall adhere to the specified structure.
2.2.2 Version Tags/Labels
All software built and delivered to a test group shall be tagged/labeled with an incremental (unique) tag/label for identification. Bugs found during testing shall reference the delivered code baseline. The final delivery intended for deployment shall be tagged/labeled with a permanent tag/label.
2.3 Release Management
2.3.1 Code Freeze
All USPTO created project plans will include a specific date for a Code Freeze. A Code Freeze is a point in time, in the development process, that the rules for making changes to that code become stricter. A Code Freeze denotes the end that development iteration in order to reduce the scale or frequency of changes in preparation for meeting release dates. Code is also promoted to the test area for delivery to the test team.
Updates to software, while in code freeze, are to fix bugs designated as critical -- as specified during bug triage. All changes made, during code freeze, shall be peer reviewed by a Senior Member of the engineering team and, conditionally, by a USPTO designate.

The Code Freeze date shall appear in the project plan and shall be positioned in the final stage of development -- to assure that software, known to work correctly, continues to work correctly.
2.3.2 Code Release

All USPTO releases shall include release notes.
2.3.3 Configuration Status Accounting

All USPTO releases shall adhere to and support any Configuration Status Accounting policies and procedures.
2.3.4 CM Audits

 Periodic CM audits are conducted to validate the production code against the CM repository. All Audit findings must be remediation.

[image: image1][image: image2][image: image3]
