

March 12, 2013
To: United States Patent & Trademark Office
From: Michael Risch, Villanova University School of Law1

risch@law.villanova.edu

Re: Request for Comments on Functional Claiming and Software Patents
Docket No. PTO-P-2012-0052

I was sorry to miss the roundtables on this topic. I respectfully submit my comments in
response to the above request for comments.

These comments question the ability of 35 USC § 112(f) to solve the problem of software
patents, assuming we can agree on what that problem is. That said, I agree that indefiniteness
through § 112(f) is one tool to invalidate software patents when appropriate. I also applaud any
effort to shed light on functional claiming, which is problematic for many reasons I discuss
below. However, my concern is that use of § 112(f) will not necessarily make software more
certain, nor do I believe that the primary problem with functional claiming is even lack of
certainty. Instead, functional claiming implicates each of novelty, nonobviousness, description,
and enablement. The remainder of these comments explains how.

Functional Claiming, Alappat, and Novelty

The rise of functional claiming – at least widespread acceptance of it – can be traced to In
re Alappat, and its legal fiction that old hardware becomes new again if it is configured with
different functionality. We live with this fiction because it allows for patenting of machines
rather than methods, but functional claiming is the necessary by-product. The easiest way to
solve the functional claiming problem is to reverse the rule of Alappat, and recognize reality:
machines do not become new simply because new software is loaded onto them. Algorithms are
not structure. Trying to fit algorithms into the framework of structure is problematic in that sense
alone, because, as discussed below, we have little way of knowing when an algorithm is
sufficiently defined as to be “structural,” nor do we know what its equivalents are.

Methods are Algorithms

Even if Alappat were reversed, patentees would not be without protection for inventions,
of course. They could claim methods that perform the series of steps on a computer. Such claims
would be a new use of the machine under 35 U.S.C. § 100(b). Indeed, one of my primary
concerns with reliance on § 112(f) is that the very same functions would be valid if claimed as a
series of steps. In other words, the functional capabilities are the algorithm. The “structure” is
merely incidental in such claims, and that’s the whole point of method claims in the first place.

This means that we allow things in method claims (and in non-means-plus-function
apparatus) claims that we don’t allow under § 112(f). That’s OK, but we should be explicit about
where § 112(f) might apply, and where it might not. I believe that this is a real shortfall in the
suggested approach.

1 University affiliation is provided for identification only. These comments reflect the views of the author and no
others, including Villanova University.

This shortfall is compounded by a lack of understanding about what equivalents might
apply to an algorithm. The proposal implies that the § 112(f) would result in narrower claims
than a comparable claim that includes “structure” in the claim. But this cannot be right if we take
the history and meaning of §112(f) seriously. One of the points of the statute was to ensure that
patentees would not be limited to the exact structure that they describe, but really any structure
that is equivalent and performs the same function. So, § 112 (f) gives with one and takes away
with the other. It might invalidate a few patents that have no algorithm, but it might not limit the
scope of patents to their particular algorithms—it might expand them! This expansion can be
contained if equivalents are taken seriously and prescribed narrowly, but that is supposed to
happen already, and it seems to be failing.

Written Description

Mark Lemley’s article notes that a primary problem of functional claiming is that it
allows for broad patents covering far more than what the inventor invented and described. The
goal, it is clear, should be to limit to inventor to what was invented, rather than what was
claimed. This goal, while important—indeed, critical!, is not about indefiniteness. It is about
written description. In other words, in many cases, the concern about functional claiming is not
that the claim is indefinite. In most cases, one knows exactly the “means” that is performing the
function. The problem is that the claimed function is far too broad for the disclosure.

But this problem is best managed by asking what the inventor invented, and determining
whether the inventor conceived of a claim as broad as that included in the patent. This may be
preferable to § 112(f) because it allows the PTO and courts to focus on the entire claim, and not
piecemeal elements. It may also be preferable, because equivalents need not be considered;
instead, the question is whether the inventor actually invented the thing at issue.

Obviousness

Another restatement of the broad patent coverage is that functional language allows
patentees to own the solution, rather than the implementation. But this, too, is not really an
indefiniteness problem under § 112(f). To be sure, in many cases the inventor will fail to disclose
how they actually solved a problem, but if the inventor discloses the algorithm used, then he or
she will still be able to claim the broad solution, where the solution is the algorithm. That
concern is not indefiniteness, but obviousness.

To date, and in other areas of patenting, we have given credit to inventors that have
conceived of (nominally) non-obvious solutions that were obvious to implement, even if the
obvious implementation locked out the field. The question is whether such an approach should
continue for software patenting. That is beyond the scope of these comments, but I want to point
out that obviousness is a core problem with most software patents—at least the hundreds on
which I have conducted prior art searches. The patentee has solved some problem (one-click
ordering, reverse auctions, shadow escrow accounts) that is relatively easy to implement. But
once they have solved the problem, others cannot perform the same method, and § 112(f) will
not make life easier. Patentees may well disclose the algorithms in their patents. Further, they

may disclose them in method claims. And the patent continues, despite appearing to be relatively
obvious and easy to implement.

Enablement

Also unclear in the proposal is how § 112(f) might be implemented. As Colleen Chien’s
roundtable presentation shows, many hot-button patents – including extremely broad ones – have
detailed disclosures with detailed algorithms. At the very least, such patents disclose a
“functional abstraction” of “what the computer will do.” This is a form of algorithm, and thus
satisfies the “structure” requirement as proposed and currently applied. Many patents appeared to
do better than functional abstractions, and included pseudocode and even data structures.

Of course, functional abstraction is not the ideal way to present an algorithm. If the
algorithm is presented as a series of steps the computer will perform, then the PHOSITA might
need to do a bit of work to determine just what code and data structures are necessary.

But this, too, is only a question of definiteness in the marginal case. If the issue is “what
the program will do” with respect to the entire claim, then it is surely indefinite. For example, if
the specification merely stated that, “the program will present a reverse auction,” then it might be
indefinite.

However, if the functional abstraction is present for each means + function step, then the
PHOSITA would know the algorithm. For example, if claim includes “means for a user to input
a number,” and the specification includes the functional abstraction, “the program will present a
data field that accepts input from the user,” then the algorithm would be satisfied.

Or would it? This is unclear from the proposals. But the way we would decide that
question is no longer one of definiteness, but of enablement. We ask whether the PHOSITA can
read and understand the invention. This comes as no surprise. When we worry about breadth of
an invention in light of a disclosure, enablement is usually the first doctrine that comes to mind. I
submit that it must be considered as part of the solution.

In summary, I agree that functional claiming is a problem. I also agree that failure to
disclose structure in means-plus-function claiming is a problem. I am, unfortunately, not
convinced that application—even stricter application—of § 112(f) is a panacea. I wish there were
some panacea, but problems with overbroad and unclear software patents go much deeper, to
novelty, obviousness, description, and enablement, among other things.

Respectfully submitted,

/s/

Michael Risch

