
From: adrian stovall [e-mail redacted]

Sent: Sunday, August 01, 2010 2:52 PM

To: Bilski_Guidance

Subject: Comments...

I work day-to-day as a software developer for a commercial

consulting firm. As such, I have a vested interest in the way in which

the USPTO considers patents related to software.

The machine-or-transformation test has been problematic for

software because of the way the USPTO has used it in the past.

The Bilski decision is the first acknowledgment by a US court that

software is not patentable in and of itself.

Computer software for modern computers is software for generic

computing devices. This statement is true for computers ranging

from federally-funded supercomputing clusters to commodity servers

to desktop and laptop PCs to mobile phones. All of these are

general-purpose computing devices, and all can perform substantially

the same operations (at different speeds, screen resolutions, and

fidelity). The vendor of the machine is unimportant, as is the specific

operating system, compiler, or programming language used.

Software is necessarily abstract. In all instances from music boxes to

weather simulators, software is a set of instructions for the

computer...an algorithm. A specific input *always* produces a

specific output, and the relationship between input and output is

discovered, not invented (as is true for all algorithms). Even in the

case of a music box, it is not the unique pattern of raised bumps on

the cylinder that is novel, but the physical implementation of a

machine that turns them into sound. Software never produces a

physical effect...it directs physical hardware to produce the effect for

which it was designed.

Thanks to Bilski, we have courts taking note of this distinction, and

the USPTO should, as well. Allowing the issuance of patents for

software stifles innovation and expressly prohibits the advancement

of the useful arts as related to software. No software developer can

be certain that any piece of software is conceptually unique in every

detail, and in most cases, developers may be certain that they are
going to be running afoul of existing patents simply by writing a
program that produces meaningful output.

Until software is ruled to be no longer patentable by the USPTO, and
existing software patents are ruled invalid, I will be unable to be
certain that the unique works that I and my fellow developers create
will not lead myself, my employer, or our clients towards an
expensive and unnecessary lawsuit.

In short, patents and software do not belong together, and cause
substantial harm to all software development efforts.

