
From: Patrick Simmons [e-mail redacted]
Sent: Monday, September 27, 2010 2:13 AM
To: Bilski_Guidance
Subject: Software Patents after Bilski

As a software developer who also has a keen interest in law, I hope you will interpret the
Supreme Court's recent Bilski decision as pulling back from the expansive interpretation of
patentable subject matter endorsed by such cases as State Street. In particular, I hope that you
will draft guidelines excluding inventions claiming software executed on a general-purpose
computer as unpatentable, abstract ideas. In the first part of this email, I will discuss the legal and
technical concerns supporting such guidelines. In the second part of this email, I will discuss the
public policy concerns motivating such guidelines.

Software source code is fundamentally nothing more or less than an expression of mathematical
theorems. Some of my colleagues' work concerns analyzing and proving theorems regarding
source code written in languages such as Java. These theorems generally state things like, "this
code will not allow unauthorized access to the system," or, "this code will not dereference a null
reference." It is only possible for logical proofs of these properties to exist because Java source
code is a mathematical expression. The proper way to consider software is as an alternate
notation for first-order logic.

Though mathematics is provably software's fundamental nature, software's applications may
sometimes seem far removed from this, and I am not suggesting that any patent merely
mentioning software should be unpatentable. A novel assembly line method using software only
tangentially may very well be patentable, as software was not part of the inventive step. I would
suggest, as a rough test in considering patent applications, replacing a software system with an
opaque machine deemed unpatentable (due to the abstract nature of mathematics and the
obviousness of its execution on a general-purpose computer), and considering a patent application
in that light. In terms of the Interim Guidelines, I would suggest adding clarification that a
general-purpose computer is not to be considered a "particular machine" within the
meaning of the guidelines.

Very strong public policy motivations exist for excluding software in this way. Software is easy
to modify, easy to distribute, and often created by individuals and non-profit entities. It is routine
for academics and others to post packets of source code on a website as a form of
discourse. Even the threat of a patent lawsuit is often enough to have a significant chilling effect
on this type of technical discourse. Moreover, the pace of innovation in software, because it is
easy to modify and distribute, is extremely quick when compared to the pace of innovation in
other fields. 20 years is far too long to hold a software idea hostage. Software startups need to be
able to deliver innovative products without licensing the basics from 15 years ago from their
competitors, and individuals and academics need the freedom to discuss ideas without the chilling
threat of lawsuits. Society is best served by protecting software with copyright and trade
secrets. From both a legal and societal standpoint, patents should not extend in scope to cover
this form of mathematics.

Thank you for your time.

Patrick Simmons
Ph.D. Candidate, Computer Science
University of Illinois at Urbana-Champaign

